
Using direction ratio shows that the points $A(2,3, - 4), B(1, - 2,3)$ and $C(3,8, - 11)$ are collinear.
Answer
216.6k+ views
Hint: First subtract 2 from 1, 3 from -2 and -4 from 3 to obtain the direction ratio $\left( {{a_1},{a_2},{a_3}} \right)$ of the line AB. Then subtract 1 from 3, -2 from 8 and 3 from -11 to obtain the direction ratio $\left( {{b_1},{b_2},{b_3}} \right)$ of the line BC. Then divide ${a_1}$ by ${b_1}$, ${a_2}$ by ${b_2}$ and ${a_3}$ by ${b_3}$, if all the ratios are same then the given points are collinear.
Formula Used:
If $\left( {{a_1},{a_2},{a_3}} \right)$are the direction cosines of a line AB and $\left( {{b_1},{b_2},{b_3}} \right)$ are the direction cosines of a line BC, then the points A, B and C are collinear if
$\dfrac{{{a_1}}}{{{b_1}}} = \dfrac{{{a_2}}}{{{b_2}}} = \dfrac{{{a_3}}}{{{b_3}}}$.
Complete step by step solution:
The direction ratios of the line formed by A, B are
$\left( {1 - 2, - 2 - 3,3 - ( - 4)} \right)$
=$\left( { - 1, - 5,7} \right)$
The direction ratios of the line formed by B, C are
$\left( {3 - 1,8 - ( - 2), - 11 - 3} \right)$
=$\left( {2,10, - 14} \right)$
Now, divide -1 by 2, -5 by 10 and 7 by -14 to observe whether the ratios are the same or not.
$ - \dfrac{1}{2}, - \dfrac{5}{{10}}, - \dfrac{7}{{14}}$
That is, $ - \dfrac{1}{2} = - \dfrac{1}{2} = - \dfrac{1}{2}$
As the ratios of the direction cosines of the line formed by A, B and B, C are the same,
Hence, A, B and C are collinear.
Note: We commonly obtain the equation by two points and then the direction cosines; this process is time-consuming but not incorrect. To answer the question quickly, obtain the direction cosines from the given points and their ratio.
Formula Used:
If $\left( {{a_1},{a_2},{a_3}} \right)$are the direction cosines of a line AB and $\left( {{b_1},{b_2},{b_3}} \right)$ are the direction cosines of a line BC, then the points A, B and C are collinear if
$\dfrac{{{a_1}}}{{{b_1}}} = \dfrac{{{a_2}}}{{{b_2}}} = \dfrac{{{a_3}}}{{{b_3}}}$.
Complete step by step solution:
The direction ratios of the line formed by A, B are
$\left( {1 - 2, - 2 - 3,3 - ( - 4)} \right)$
=$\left( { - 1, - 5,7} \right)$
The direction ratios of the line formed by B, C are
$\left( {3 - 1,8 - ( - 2), - 11 - 3} \right)$
=$\left( {2,10, - 14} \right)$
Now, divide -1 by 2, -5 by 10 and 7 by -14 to observe whether the ratios are the same or not.
$ - \dfrac{1}{2}, - \dfrac{5}{{10}}, - \dfrac{7}{{14}}$
That is, $ - \dfrac{1}{2} = - \dfrac{1}{2} = - \dfrac{1}{2}$
As the ratios of the direction cosines of the line formed by A, B and B, C are the same,
Hence, A, B and C are collinear.
Note: We commonly obtain the equation by two points and then the direction cosines; this process is time-consuming but not incorrect. To answer the question quickly, obtain the direction cosines from the given points and their ratio.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

