
Two wires that are made up of different materials whose specific resistance are in the ratio of 2:3, length 3:4, area 4:5. Find the ratio of their resistance.
A. 6:5
B. 6:8
C. 5:8
D. 1:2
Answer
217.5k+ views
Hint: Resistance is defined as the property of a material that opposes the current flow in the conductor. Here, they have given the ratios of densities, length, and area. Using these data, we are going to find the ratio of the resistance.
Formula Used:
The formula for the resistance of a wire is,
\[R = \rho \dfrac{l}{A}\]
Where, \[\rho \] is the resistivity of a material, l is the length of wire and A is cross-sectional area.
Complete step by step solution:
Consider two wires that are made up of different materials and their specific resistance is in the ratio of 2:3, length 3:4, area 4:5. We need to find the ratio of their resistance. For that consider the formula to find the resistance of a wire,
\[R = \rho \dfrac{l}{A}\]
Consider the formula for resistances of two wires are,
\[{R_1} = {\rho _1}\dfrac{{{l_1}}}{{{A_1}}}\] and \[{R_2} = {\rho _2}\dfrac{{{l_2}}}{{{A_2}}}\]
The ratio of resistance is,
\[\dfrac{{{R_1}}}{{{R_2}}} = \dfrac{{{\rho _1}}}{{{\rho _2}}}\dfrac{{{l_1}}}{{{l_2}}}\dfrac{{{A_2}}}{{{A_1}}}\]
Given that,
\[\dfrac{{{\rho _1}}}{{{\rho _2}}} = \dfrac{2}{3}\], \[\dfrac{{{l_1}}}{{{l_2}}} = \dfrac{3}{4}\] and \[\dfrac{{{A_1}}}{{{A_2}}} = \dfrac{4}{5}\]
Substitute the value in above equation, we get,
\[\dfrac{{{R_1}}}{{{R_2}}} = \dfrac{2}{3} \times \dfrac{3}{4} \times \dfrac{5}{4} \\ \]
\[\Rightarrow \dfrac{{{R_1}}}{{{R_2}}} = \dfrac{1}{4} \times \dfrac{5}{2} \\ \]
\[\therefore \dfrac{{{R_1}}}{{{R_2}}} = \dfrac{5}{8}\]
Therefore, the ratio of their resistance is 5:8.
Hence, option C is the correct answer.
Note:Here, in this problem, remember the formula to calculate the resistance of a wire and note down the values of given data, and thus we obtain the required solution. The resistance of a wire depends on its length, that is the resistance of a wire is directly proportional to its length. Hence, if the wire is longer, the resistance will be higher.
Formula Used:
The formula for the resistance of a wire is,
\[R = \rho \dfrac{l}{A}\]
Where, \[\rho \] is the resistivity of a material, l is the length of wire and A is cross-sectional area.
Complete step by step solution:
Consider two wires that are made up of different materials and their specific resistance is in the ratio of 2:3, length 3:4, area 4:5. We need to find the ratio of their resistance. For that consider the formula to find the resistance of a wire,
\[R = \rho \dfrac{l}{A}\]
Consider the formula for resistances of two wires are,
\[{R_1} = {\rho _1}\dfrac{{{l_1}}}{{{A_1}}}\] and \[{R_2} = {\rho _2}\dfrac{{{l_2}}}{{{A_2}}}\]
The ratio of resistance is,
\[\dfrac{{{R_1}}}{{{R_2}}} = \dfrac{{{\rho _1}}}{{{\rho _2}}}\dfrac{{{l_1}}}{{{l_2}}}\dfrac{{{A_2}}}{{{A_1}}}\]
Given that,
\[\dfrac{{{\rho _1}}}{{{\rho _2}}} = \dfrac{2}{3}\], \[\dfrac{{{l_1}}}{{{l_2}}} = \dfrac{3}{4}\] and \[\dfrac{{{A_1}}}{{{A_2}}} = \dfrac{4}{5}\]
Substitute the value in above equation, we get,
\[\dfrac{{{R_1}}}{{{R_2}}} = \dfrac{2}{3} \times \dfrac{3}{4} \times \dfrac{5}{4} \\ \]
\[\Rightarrow \dfrac{{{R_1}}}{{{R_2}}} = \dfrac{1}{4} \times \dfrac{5}{2} \\ \]
\[\therefore \dfrac{{{R_1}}}{{{R_2}}} = \dfrac{5}{8}\]
Therefore, the ratio of their resistance is 5:8.
Hence, option C is the correct answer.
Note:Here, in this problem, remember the formula to calculate the resistance of a wire and note down the values of given data, and thus we obtain the required solution. The resistance of a wire depends on its length, that is the resistance of a wire is directly proportional to its length. Hence, if the wire is longer, the resistance will be higher.
Recently Updated Pages
Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Analytical Method of Vector Addition Explained Simply

Arithmetic, Geometric & Harmonic Progressions Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

