
Two spheres A and B of masses m and 2m and radii 2R and R respectively are placed in contact as shown. Where does the center of mass (COM) of the system lie?

A. Inside A
B. Inside B
C. At the point of contact
D. None of these
Answer
221.1k+ views
Hint: Before we start addressing the problem let’s understand about the center of mass. It is defined as all the masses of a body which is concentrated at the center of the body and which depend on the mass and distance from the center of the object or we can say position vector.
Formula Used:
To find the center of mass of sphere, we have,
\[{X_{CM}} = \dfrac{{{m_1}{x_1} + {m_2}{x_2}}}{{{m_1} + {m_2}}}\]
Where,
\[{m_1}\]and\[{m_2}\] are the masses of two spheres A and B.
\[{x_1}\]and \[{x_2}\] are distances from the center of spheres.
Complete step by step solution:

Image: Spheres of radius R and 2R
Consider the two spheres A and B of masses having m and 2m with the radii 2R and R that are placed in contact with one another as shown in the figure. Then we need to find where the center of the mass lies.
In order to do that we are considering the formula to find the center of mass,
\[{X_{CM}} = \dfrac{{{m_1}{x_1} + {m_2}{x_2}}}{{{m_1} + {m_2}}} \\ \]
Now, put the value of \[{m_1}\],\[{m_2}\],\[{x_1}\] and \[{x_2}\] using data
\[{X_{CM}} = \dfrac{{m\left( 0 \right) + 2m\left( {R + 2R} \right)}}{{m + 2m}}\]
Since the center of mass lie in the center of the first sphere which is our reference point, therefore, \[{x_1} = 0\] and \[{x_2} = R + 2R\]
\[{X_{CM}} = \dfrac{{2m\left( {3R} \right)}}{{3m}} \\ \]
\[\therefore {X_{CM}} = 2R\]
Therefore, the center of mass of a system lies at the point of contact.
Hence, option C is the correct answer.
Note:The center of mass is used to calculate the masses distributed in space, such as the linear and angular momentum of planetary bodies and rigid body dynamics etc.
Formula Used:
To find the center of mass of sphere, we have,
\[{X_{CM}} = \dfrac{{{m_1}{x_1} + {m_2}{x_2}}}{{{m_1} + {m_2}}}\]
Where,
\[{m_1}\]and\[{m_2}\] are the masses of two spheres A and B.
\[{x_1}\]and \[{x_2}\] are distances from the center of spheres.
Complete step by step solution:

Image: Spheres of radius R and 2R
Consider the two spheres A and B of masses having m and 2m with the radii 2R and R that are placed in contact with one another as shown in the figure. Then we need to find where the center of the mass lies.
In order to do that we are considering the formula to find the center of mass,
\[{X_{CM}} = \dfrac{{{m_1}{x_1} + {m_2}{x_2}}}{{{m_1} + {m_2}}} \\ \]
Now, put the value of \[{m_1}\],\[{m_2}\],\[{x_1}\] and \[{x_2}\] using data
\[{X_{CM}} = \dfrac{{m\left( 0 \right) + 2m\left( {R + 2R} \right)}}{{m + 2m}}\]
Since the center of mass lie in the center of the first sphere which is our reference point, therefore, \[{x_1} = 0\] and \[{x_2} = R + 2R\]
\[{X_{CM}} = \dfrac{{2m\left( {3R} \right)}}{{3m}} \\ \]
\[\therefore {X_{CM}} = 2R\]
Therefore, the center of mass of a system lies at the point of contact.
Hence, option C is the correct answer.
Note:The center of mass is used to calculate the masses distributed in space, such as the linear and angular momentum of planetary bodies and rigid body dynamics etc.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

