
Two rods having thermal conductivities in the ratio of 5:3 and having an equal length and equal cross-section are joined face to face. If the temperature of the free end of the first rod is \[{100^0}C\] and the temperature of the free end of the second rod is \[{20^0}C\], find the temperature of the junction.
A. \[{90^0}C\]
B. \[{85^0}C\]
C. \[{70^0}C\]
D. \[{50^0}C\]
Answer
220.8k+ views
Hint: In order to solve this problem we need to understand the rate of heat transfer. The rate of flow of heat is the amount of heat that is transferred per unit of time. Here, using the formula for heat flow we are going to find the solution. When the two rods are kept in contact with each other then, the temperature at the junction of 2 rods is known as junction temperature.
Formula Used:
To find the heat flow the formula is,
\[\dfrac{Q}{t} = KA\dfrac{{\Delta \theta }}{L}\]
Where,
A is cross-sectional area of rod
\[\Delta \theta \] is temperature difference between two ends of the rod
L is length of the rod
K is thermal conductivity
Complete step by step solution:
Consider two rods having thermal conductivities in the ratio of 5:3 and having an equal length and equal cross-section are joined face to face. If the temperature of the free end of the first rod is \[{100^0}C\]and the temperature of the free end of the second rod is \[{20^0}C\], we need to find the temperature of the junction.
The rate of flow of heat for the two rods is,
\[{\left( {\dfrac{Q}{t}} \right)_1} = {K_1}A\dfrac{{\Delta \theta }}{L}\]
And, \[{\left( {\dfrac{Q}{t}} \right)_2} = {K_2}A\dfrac{{\Delta \theta }}{L}\]
As we know that, at steady-state,
\[{\left( {\dfrac{Q}{t}} \right)_1} = {\left( {\dfrac{Q}{t}} \right)_2} \\ \]
\[\Rightarrow {K_1}A\dfrac{{\Delta \theta }}{L} = {K_2}A\dfrac{{\Delta \theta }}{L} \\ \]
\[\Rightarrow {K_1}\left( {{\theta _1} - \theta } \right) = {K_2}\left( {\theta - {\theta _2}} \right) \\ \]
Here, \[{K_1} = 5\], \[{K_2} = 3\], \[{\theta _1} = {100^0}C\]and \[{\theta _2} = {20^0}C\]
Then, above equation will become,
\[5\left( {{{100}^0} - \theta } \right) = 3\left( {\theta - {{20}^0}} \right) \\ \]
\[\Rightarrow {500^0} - 5\theta = 3\theta - {60^0} \\ \]
\[\Rightarrow 8\theta = {560^0} \\ \]
\[\Rightarrow \theta = \dfrac{{{{560}^0}}}{8} \\ \]
\[\therefore \theta = {70^0}\]
Therefore, the temperature of the common junction is, \[{70^0}\].
Hence, option C is the correct answer.
Note: Here, it is important to remember that when we are going to find the temperature of the junction, the steady state comes into picture. At steady state we equate the heat flow of both the rods, thereby calculating the temperature of the junction.
Formula Used:
To find the heat flow the formula is,
\[\dfrac{Q}{t} = KA\dfrac{{\Delta \theta }}{L}\]
Where,
A is cross-sectional area of rod
\[\Delta \theta \] is temperature difference between two ends of the rod
L is length of the rod
K is thermal conductivity
Complete step by step solution:
Consider two rods having thermal conductivities in the ratio of 5:3 and having an equal length and equal cross-section are joined face to face. If the temperature of the free end of the first rod is \[{100^0}C\]and the temperature of the free end of the second rod is \[{20^0}C\], we need to find the temperature of the junction.
The rate of flow of heat for the two rods is,
\[{\left( {\dfrac{Q}{t}} \right)_1} = {K_1}A\dfrac{{\Delta \theta }}{L}\]
And, \[{\left( {\dfrac{Q}{t}} \right)_2} = {K_2}A\dfrac{{\Delta \theta }}{L}\]
As we know that, at steady-state,
\[{\left( {\dfrac{Q}{t}} \right)_1} = {\left( {\dfrac{Q}{t}} \right)_2} \\ \]
\[\Rightarrow {K_1}A\dfrac{{\Delta \theta }}{L} = {K_2}A\dfrac{{\Delta \theta }}{L} \\ \]
\[\Rightarrow {K_1}\left( {{\theta _1} - \theta } \right) = {K_2}\left( {\theta - {\theta _2}} \right) \\ \]
Here, \[{K_1} = 5\], \[{K_2} = 3\], \[{\theta _1} = {100^0}C\]and \[{\theta _2} = {20^0}C\]
Then, above equation will become,
\[5\left( {{{100}^0} - \theta } \right) = 3\left( {\theta - {{20}^0}} \right) \\ \]
\[\Rightarrow {500^0} - 5\theta = 3\theta - {60^0} \\ \]
\[\Rightarrow 8\theta = {560^0} \\ \]
\[\Rightarrow \theta = \dfrac{{{{560}^0}}}{8} \\ \]
\[\therefore \theta = {70^0}\]
Therefore, the temperature of the common junction is, \[{70^0}\].
Hence, option C is the correct answer.
Note: Here, it is important to remember that when we are going to find the temperature of the junction, the steady state comes into picture. At steady state we equate the heat flow of both the rods, thereby calculating the temperature of the junction.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

