
Two rods having thermal conductivities in the ratio of 5:3 and having an equal length and equal cross-section are joined face to face. If the temperature of the free end of the first rod is \[{100^0}C\] and the temperature of the free end of the second rod is \[{20^0}C\], find the temperature of the junction.
A. \[{90^0}C\]
B. \[{85^0}C\]
C. \[{70^0}C\]
D. \[{50^0}C\]
Answer
164.4k+ views
Hint: In order to solve this problem we need to understand the rate of heat transfer. The rate of flow of heat is the amount of heat that is transferred per unit of time. Here, using the formula for heat flow we are going to find the solution. When the two rods are kept in contact with each other then, the temperature at the junction of 2 rods is known as junction temperature.
Formula Used:
To find the heat flow the formula is,
\[\dfrac{Q}{t} = KA\dfrac{{\Delta \theta }}{L}\]
Where,
A is cross-sectional area of rod
\[\Delta \theta \] is temperature difference between two ends of the rod
L is length of the rod
K is thermal conductivity
Complete step by step solution:
Consider two rods having thermal conductivities in the ratio of 5:3 and having an equal length and equal cross-section are joined face to face. If the temperature of the free end of the first rod is \[{100^0}C\]and the temperature of the free end of the second rod is \[{20^0}C\], we need to find the temperature of the junction.
The rate of flow of heat for the two rods is,
\[{\left( {\dfrac{Q}{t}} \right)_1} = {K_1}A\dfrac{{\Delta \theta }}{L}\]
And, \[{\left( {\dfrac{Q}{t}} \right)_2} = {K_2}A\dfrac{{\Delta \theta }}{L}\]
As we know that, at steady-state,
\[{\left( {\dfrac{Q}{t}} \right)_1} = {\left( {\dfrac{Q}{t}} \right)_2} \\ \]
\[\Rightarrow {K_1}A\dfrac{{\Delta \theta }}{L} = {K_2}A\dfrac{{\Delta \theta }}{L} \\ \]
\[\Rightarrow {K_1}\left( {{\theta _1} - \theta } \right) = {K_2}\left( {\theta - {\theta _2}} \right) \\ \]
Here, \[{K_1} = 5\], \[{K_2} = 3\], \[{\theta _1} = {100^0}C\]and \[{\theta _2} = {20^0}C\]
Then, above equation will become,
\[5\left( {{{100}^0} - \theta } \right) = 3\left( {\theta - {{20}^0}} \right) \\ \]
\[\Rightarrow {500^0} - 5\theta = 3\theta - {60^0} \\ \]
\[\Rightarrow 8\theta = {560^0} \\ \]
\[\Rightarrow \theta = \dfrac{{{{560}^0}}}{8} \\ \]
\[\therefore \theta = {70^0}\]
Therefore, the temperature of the common junction is, \[{70^0}\].
Hence, option C is the correct answer.
Note: Here, it is important to remember that when we are going to find the temperature of the junction, the steady state comes into picture. At steady state we equate the heat flow of both the rods, thereby calculating the temperature of the junction.
Formula Used:
To find the heat flow the formula is,
\[\dfrac{Q}{t} = KA\dfrac{{\Delta \theta }}{L}\]
Where,
A is cross-sectional area of rod
\[\Delta \theta \] is temperature difference between two ends of the rod
L is length of the rod
K is thermal conductivity
Complete step by step solution:
Consider two rods having thermal conductivities in the ratio of 5:3 and having an equal length and equal cross-section are joined face to face. If the temperature of the free end of the first rod is \[{100^0}C\]and the temperature of the free end of the second rod is \[{20^0}C\], we need to find the temperature of the junction.
The rate of flow of heat for the two rods is,
\[{\left( {\dfrac{Q}{t}} \right)_1} = {K_1}A\dfrac{{\Delta \theta }}{L}\]
And, \[{\left( {\dfrac{Q}{t}} \right)_2} = {K_2}A\dfrac{{\Delta \theta }}{L}\]
As we know that, at steady-state,
\[{\left( {\dfrac{Q}{t}} \right)_1} = {\left( {\dfrac{Q}{t}} \right)_2} \\ \]
\[\Rightarrow {K_1}A\dfrac{{\Delta \theta }}{L} = {K_2}A\dfrac{{\Delta \theta }}{L} \\ \]
\[\Rightarrow {K_1}\left( {{\theta _1} - \theta } \right) = {K_2}\left( {\theta - {\theta _2}} \right) \\ \]
Here, \[{K_1} = 5\], \[{K_2} = 3\], \[{\theta _1} = {100^0}C\]and \[{\theta _2} = {20^0}C\]
Then, above equation will become,
\[5\left( {{{100}^0} - \theta } \right) = 3\left( {\theta - {{20}^0}} \right) \\ \]
\[\Rightarrow {500^0} - 5\theta = 3\theta - {60^0} \\ \]
\[\Rightarrow 8\theta = {560^0} \\ \]
\[\Rightarrow \theta = \dfrac{{{{560}^0}}}{8} \\ \]
\[\therefore \theta = {70^0}\]
Therefore, the temperature of the common junction is, \[{70^0}\].
Hence, option C is the correct answer.
Note: Here, it is important to remember that when we are going to find the temperature of the junction, the steady state comes into picture. At steady state we equate the heat flow of both the rods, thereby calculating the temperature of the junction.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
