
Two resistance connected in series as shown in diagram. What is the value of $R$ ?
(A) $4\,\Omega $
(B) $6\,\Omega $
(C) $5\,\Omega $
(D) $3\,\Omega $
Answer
233.1k+ views
Hint: use the formula of the ohm’s law and rearrange it. Substitute the known potential difference and the resistance in it to find the current value. Use this current value in the ohm’s law again to find the value of the unknown resistance of the second resistor.
Useful formula:
(1) The formula of the ohm’s law is given by
$V = IR$
Where $V$ is the potential difference, $I$ is the current and $R$ is the resistance.
Complete step by step solution:
From the given diagram, the resistance of the first resistor, ${R_1} = 5\,\Omega $
Potential difference of the first resistor, ${V_1} = 10\,V$
Potential difference of the second resistor, ${V_2} = 6\,V$
The given circuit is the series circuit that consists of the two resistors of the known and the unknown resistors
Using the ohm’s law,
$V = IR$
By rearranging the formula, we get
$I = \dfrac{V}{R}$ ……………………(1)
Substitute the known parameters in the above step, we get
$I = \dfrac{{10}}{5} = 2\,A$
Substitute the condition for the second resistor in the equation (2),
$I = \dfrac{6}{{{R_2}}}$
Since this is a series circuit, the current in the resistor will be the same.
$
2 = \dfrac{6}{{{R_2}}} \\
{R_2} = 3\,\Omega \\
$
Hence the resistance of the second resistor is $3\,\Omega $ .
Thus the option (D) is correct.
Note: Remember that if the resistors are connected in series, the current will be the same through each resistor and its potential difference will be equal to the sum of the potential difference developed in each resistor. If the resistor is connected in parallel, the current will be the sum of the current through each resistor and its potential difference will be the same to each resistor.
Useful formula:
(1) The formula of the ohm’s law is given by
$V = IR$
Where $V$ is the potential difference, $I$ is the current and $R$ is the resistance.
Complete step by step solution:
From the given diagram, the resistance of the first resistor, ${R_1} = 5\,\Omega $
Potential difference of the first resistor, ${V_1} = 10\,V$
Potential difference of the second resistor, ${V_2} = 6\,V$
The given circuit is the series circuit that consists of the two resistors of the known and the unknown resistors
Using the ohm’s law,
$V = IR$
By rearranging the formula, we get
$I = \dfrac{V}{R}$ ……………………(1)
Substitute the known parameters in the above step, we get
$I = \dfrac{{10}}{5} = 2\,A$
Substitute the condition for the second resistor in the equation (2),
$I = \dfrac{6}{{{R_2}}}$
Since this is a series circuit, the current in the resistor will be the same.
$
2 = \dfrac{6}{{{R_2}}} \\
{R_2} = 3\,\Omega \\
$
Hence the resistance of the second resistor is $3\,\Omega $ .
Thus the option (D) is correct.
Note: Remember that if the resistors are connected in series, the current will be the same through each resistor and its potential difference will be equal to the sum of the potential difference developed in each resistor. If the resistor is connected in parallel, the current will be the sum of the current through each resistor and its potential difference will be the same to each resistor.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

