
Two poles of heights $6m$and $11m$ stand on a plane ground. If the distance between the feet of the poles is $12m$, find the distance between their tops.
Answer
233.1k+ views
Hint- This question can be solved by using Pythagoras theorem.

It is given that
Height of the first pole is $AB = 6m$
Height of the second pole is $CD = 11m$
Distance between the feet of poles is $AC = 12m$
We have to find the distance between the tops of pole, i.e. $BD$
Let us draw a line $BE \bot DC$
Since, it is clear from the figure that $AC \bot DC$ as pole is vertical to ground.
So, $BE = AC = 12m$
Similarly, $AB = EC = 6m$
Now,
$
DE = DC - EC \\
DE = 11 - 6 \\
DE = 5m \\
$
It is clear from the figure that the angle$\angle BED$ , is ${90^ \circ }$ because$BE \bot DC$
Thus, the triangle $BED$ is a right angled triangle.
By using Pythagoras theorem in the right angle triangle.
$
{\left( {hyp} \right)^2} = {\left( {base} \right)^2} + {\left( {height} \right)^2} \\
\Rightarrow {\left( {BD} \right)^2} = {5^2} + {12^2} \\
{\text{or }}{\left( {BD} \right)^2} = 25 + 144 \\
{\text{or }}{\left( {BD} \right)^2} = 169 \\
{\text{or }}BD = \sqrt {169} \\
BD = 13m \\
$
Hence, the distance between the tops of the pole is $13m$.
Note- Whenever we face such types of questions the key concept is that we should draw its figure and then analyze from the figure what we have to find. Like in this question we find the distance between the two poles from their tops by using Pythagoras theorem.

It is given that
Height of the first pole is $AB = 6m$
Height of the second pole is $CD = 11m$
Distance between the feet of poles is $AC = 12m$
We have to find the distance between the tops of pole, i.e. $BD$
Let us draw a line $BE \bot DC$
Since, it is clear from the figure that $AC \bot DC$ as pole is vertical to ground.
So, $BE = AC = 12m$
Similarly, $AB = EC = 6m$
Now,
$
DE = DC - EC \\
DE = 11 - 6 \\
DE = 5m \\
$
It is clear from the figure that the angle$\angle BED$ , is ${90^ \circ }$ because$BE \bot DC$
Thus, the triangle $BED$ is a right angled triangle.
By using Pythagoras theorem in the right angle triangle.
$
{\left( {hyp} \right)^2} = {\left( {base} \right)^2} + {\left( {height} \right)^2} \\
\Rightarrow {\left( {BD} \right)^2} = {5^2} + {12^2} \\
{\text{or }}{\left( {BD} \right)^2} = 25 + 144 \\
{\text{or }}{\left( {BD} \right)^2} = 169 \\
{\text{or }}BD = \sqrt {169} \\
BD = 13m \\
$
Hence, the distance between the tops of the pole is $13m$.
Note- Whenever we face such types of questions the key concept is that we should draw its figure and then analyze from the figure what we have to find. Like in this question we find the distance between the two poles from their tops by using Pythagoras theorem.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

