
Two points A and B have coordinates $(1,0)$ and $( - 1,0)$ respectively and Q is a point which satisfies the relation $AQ - BQ = \pm 1$ . Then find the locus of Q.
A.$12{x^2} - 4{y^2} = 3$
B. $12{x^2} - 4{y^2} + 3 = 3$
C. $12{x^2} + 4{y^2} = 3$
D. $12{x^2} + 4{y^2} + 3 = 3$
Answer
232.8k+ views
Hint: First let the coordinate of Q, then apply the distance formula and obtain the distance between A, Q and B, Q. Substitute the obtained distance in the given equation and calculate to obtain the required locus.
Formula Used:
The distance between the points $(a,b)$ and $(c,d)$ is
$\sqrt {{{\left( {c - a} \right)}^2} + {{\left( {d - b} \right)}^2}} $ .
${(a + b)^2} = {a^2} + 2ab + {b^2}$
${(a - b)^2} = {a^2} - 2ab + {b^2}$
${(a + b + c)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca$
Complete step by step solution:
Suppose the coordinate of Q is $\left( {x,y} \right)$ .
Then,
$AQ = \sqrt {{{(x - 1)}^2} + {{(y - 0)}^2}} $
$ = \sqrt {{{(x - 1)}^2} + {y^2}} $
And,
$BQ = \sqrt {{{(x + 1)}^2} + {{(y - 0)}^2}} $
$ = \sqrt {{{(x + 1)}^2} + {y^2}} $
Substitute $\sqrt {{{(x - 1)}^2} + {y^2}} $for AQ and $\sqrt {{{(x + 1)}^2} + {y^2}} $for BQ in the given equation and calculate to obtain the required result.
$\sqrt {{{(x - 1)}^2} + {y^2}} - \sqrt {{{(x + 1)}^2} + {y^2}} = \pm 1$
Square both sides of the equation,
$\Rightarrow {\left( {\sqrt {{{(x - 1)}^2} + {y^2}} - \sqrt {{{(x + 1)}^2} + {y^2}} } \right)^2} = {\left( { \pm 1} \right)^2}$
$\Rightarrow{\left( {\sqrt {{{(x - 1)}^2} + {y^2}} } \right)^2} + {\left( {\sqrt {{{(x + 1)}^2} + {y^2}} } \right)^2} - 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} = 1$
$\Rightarrow {(x - 1)^2} + {y^2} + {(x + 1)^2} + {y^2} - 1 = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} $
$\Rightarrow {x^2} - 2x + 1 + {y^2} + {x^2} + 2x + 1 + {y^2} - 1 = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} $
$\Rightarrow 2{x^2} + 2{y^2} + 1 = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} $
Square both sides of the equation,
$\Rightarrow {\left( {2{x^2} + 2{y^2} + 1} \right)^2} = {\left( {2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} } \right)^2}$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4\left[ {\left( {{{(x - 1)}^2} + {y^2}} \right)\left( {{{(x + 1)}^2} + {y^2}} \right)} \right]$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4\left[ {\left( {{x^2} + {y^2} - 2x + 1} \right)\left( {{x^2} + {y^2} + 2x + 1} \right)} \right]$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4\left[ \begin{array}{l}{x^4} + {x^2}{y^2} + 2{x^3} + {x^2} + {x^2}{y^2} + {y^4} + 2x{y^2} + {y^2} - 2{x^3} - 2x{y^2} - 4{x^2}\\ - 2x + {x^2} + {y^2} + 2x + 1\end{array} \right]$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4\left[ {{x^4} + {y^4} + 2{x^2}{y^2} - 2{x^2} + 2{y^2} + 1} \right]$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4{x^4} + 4{y^4} + 8{x^2}{y^2} + 8{y^2} - 8{x^2} + 4$
$\Rightarrow 12{x^2} - 4{y^2} = 3$
Option ‘A’ is correct
Note: When solving the given problems like this students often do a common mistake that is they square the equation $2{x^2} + 2{y^2} = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} - 1$ without subtracting 1 from each side of the equation and for that reason only they were not able to remove the radical sign. So in this step we need to take the square of the term $2{x^2} + 2{y^2} + 1 = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} $ to remove the radical sign otherwise it is not possible to remove the radical sign and get the desired answer.
Formula Used:
The distance between the points $(a,b)$ and $(c,d)$ is
$\sqrt {{{\left( {c - a} \right)}^2} + {{\left( {d - b} \right)}^2}} $ .
${(a + b)^2} = {a^2} + 2ab + {b^2}$
${(a - b)^2} = {a^2} - 2ab + {b^2}$
${(a + b + c)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca$
Complete step by step solution:
Suppose the coordinate of Q is $\left( {x,y} \right)$ .
Then,
$AQ = \sqrt {{{(x - 1)}^2} + {{(y - 0)}^2}} $
$ = \sqrt {{{(x - 1)}^2} + {y^2}} $
And,
$BQ = \sqrt {{{(x + 1)}^2} + {{(y - 0)}^2}} $
$ = \sqrt {{{(x + 1)}^2} + {y^2}} $
Substitute $\sqrt {{{(x - 1)}^2} + {y^2}} $for AQ and $\sqrt {{{(x + 1)}^2} + {y^2}} $for BQ in the given equation and calculate to obtain the required result.
$\sqrt {{{(x - 1)}^2} + {y^2}} - \sqrt {{{(x + 1)}^2} + {y^2}} = \pm 1$
Square both sides of the equation,
$\Rightarrow {\left( {\sqrt {{{(x - 1)}^2} + {y^2}} - \sqrt {{{(x + 1)}^2} + {y^2}} } \right)^2} = {\left( { \pm 1} \right)^2}$
$\Rightarrow{\left( {\sqrt {{{(x - 1)}^2} + {y^2}} } \right)^2} + {\left( {\sqrt {{{(x + 1)}^2} + {y^2}} } \right)^2} - 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} = 1$
$\Rightarrow {(x - 1)^2} + {y^2} + {(x + 1)^2} + {y^2} - 1 = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} $
$\Rightarrow {x^2} - 2x + 1 + {y^2} + {x^2} + 2x + 1 + {y^2} - 1 = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} $
$\Rightarrow 2{x^2} + 2{y^2} + 1 = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} $
Square both sides of the equation,
$\Rightarrow {\left( {2{x^2} + 2{y^2} + 1} \right)^2} = {\left( {2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} } \right)^2}$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4\left[ {\left( {{{(x - 1)}^2} + {y^2}} \right)\left( {{{(x + 1)}^2} + {y^2}} \right)} \right]$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4\left[ {\left( {{x^2} + {y^2} - 2x + 1} \right)\left( {{x^2} + {y^2} + 2x + 1} \right)} \right]$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4\left[ \begin{array}{l}{x^4} + {x^2}{y^2} + 2{x^3} + {x^2} + {x^2}{y^2} + {y^4} + 2x{y^2} + {y^2} - 2{x^3} - 2x{y^2} - 4{x^2}\\ - 2x + {x^2} + {y^2} + 2x + 1\end{array} \right]$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4\left[ {{x^4} + {y^4} + 2{x^2}{y^2} - 2{x^2} + 2{y^2} + 1} \right]$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4{x^4} + 4{y^4} + 8{x^2}{y^2} + 8{y^2} - 8{x^2} + 4$
$\Rightarrow 12{x^2} - 4{y^2} = 3$
Option ‘A’ is correct
Note: When solving the given problems like this students often do a common mistake that is they square the equation $2{x^2} + 2{y^2} = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} - 1$ without subtracting 1 from each side of the equation and for that reason only they were not able to remove the radical sign. So in this step we need to take the square of the term $2{x^2} + 2{y^2} + 1 = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} $ to remove the radical sign otherwise it is not possible to remove the radical sign and get the desired answer.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

