
Two points A and B have coordinates $(1,0)$ and $( - 1,0)$ respectively and Q is a point which satisfies the relation $AQ - BQ = \pm 1$ . Then find the locus of Q.
A.$12{x^2} - 4{y^2} = 3$
B. $12{x^2} - 4{y^2} + 3 = 3$
C. $12{x^2} + 4{y^2} = 3$
D. $12{x^2} + 4{y^2} + 3 = 3$
Answer
215.7k+ views
Hint: First let the coordinate of Q, then apply the distance formula and obtain the distance between A, Q and B, Q. Substitute the obtained distance in the given equation and calculate to obtain the required locus.
Formula Used:
The distance between the points $(a,b)$ and $(c,d)$ is
$\sqrt {{{\left( {c - a} \right)}^2} + {{\left( {d - b} \right)}^2}} $ .
${(a + b)^2} = {a^2} + 2ab + {b^2}$
${(a - b)^2} = {a^2} - 2ab + {b^2}$
${(a + b + c)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca$
Complete step by step solution:
Suppose the coordinate of Q is $\left( {x,y} \right)$ .
Then,
$AQ = \sqrt {{{(x - 1)}^2} + {{(y - 0)}^2}} $
$ = \sqrt {{{(x - 1)}^2} + {y^2}} $
And,
$BQ = \sqrt {{{(x + 1)}^2} + {{(y - 0)}^2}} $
$ = \sqrt {{{(x + 1)}^2} + {y^2}} $
Substitute $\sqrt {{{(x - 1)}^2} + {y^2}} $for AQ and $\sqrt {{{(x + 1)}^2} + {y^2}} $for BQ in the given equation and calculate to obtain the required result.
$\sqrt {{{(x - 1)}^2} + {y^2}} - \sqrt {{{(x + 1)}^2} + {y^2}} = \pm 1$
Square both sides of the equation,
$\Rightarrow {\left( {\sqrt {{{(x - 1)}^2} + {y^2}} - \sqrt {{{(x + 1)}^2} + {y^2}} } \right)^2} = {\left( { \pm 1} \right)^2}$
$\Rightarrow{\left( {\sqrt {{{(x - 1)}^2} + {y^2}} } \right)^2} + {\left( {\sqrt {{{(x + 1)}^2} + {y^2}} } \right)^2} - 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} = 1$
$\Rightarrow {(x - 1)^2} + {y^2} + {(x + 1)^2} + {y^2} - 1 = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} $
$\Rightarrow {x^2} - 2x + 1 + {y^2} + {x^2} + 2x + 1 + {y^2} - 1 = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} $
$\Rightarrow 2{x^2} + 2{y^2} + 1 = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} $
Square both sides of the equation,
$\Rightarrow {\left( {2{x^2} + 2{y^2} + 1} \right)^2} = {\left( {2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} } \right)^2}$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4\left[ {\left( {{{(x - 1)}^2} + {y^2}} \right)\left( {{{(x + 1)}^2} + {y^2}} \right)} \right]$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4\left[ {\left( {{x^2} + {y^2} - 2x + 1} \right)\left( {{x^2} + {y^2} + 2x + 1} \right)} \right]$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4\left[ \begin{array}{l}{x^4} + {x^2}{y^2} + 2{x^3} + {x^2} + {x^2}{y^2} + {y^4} + 2x{y^2} + {y^2} - 2{x^3} - 2x{y^2} - 4{x^2}\\ - 2x + {x^2} + {y^2} + 2x + 1\end{array} \right]$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4\left[ {{x^4} + {y^4} + 2{x^2}{y^2} - 2{x^2} + 2{y^2} + 1} \right]$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4{x^4} + 4{y^4} + 8{x^2}{y^2} + 8{y^2} - 8{x^2} + 4$
$\Rightarrow 12{x^2} - 4{y^2} = 3$
Option ‘A’ is correct
Note: When solving the given problems like this students often do a common mistake that is they square the equation $2{x^2} + 2{y^2} = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} - 1$ without subtracting 1 from each side of the equation and for that reason only they were not able to remove the radical sign. So in this step we need to take the square of the term $2{x^2} + 2{y^2} + 1 = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} $ to remove the radical sign otherwise it is not possible to remove the radical sign and get the desired answer.
Formula Used:
The distance between the points $(a,b)$ and $(c,d)$ is
$\sqrt {{{\left( {c - a} \right)}^2} + {{\left( {d - b} \right)}^2}} $ .
${(a + b)^2} = {a^2} + 2ab + {b^2}$
${(a - b)^2} = {a^2} - 2ab + {b^2}$
${(a + b + c)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca$
Complete step by step solution:
Suppose the coordinate of Q is $\left( {x,y} \right)$ .
Then,
$AQ = \sqrt {{{(x - 1)}^2} + {{(y - 0)}^2}} $
$ = \sqrt {{{(x - 1)}^2} + {y^2}} $
And,
$BQ = \sqrt {{{(x + 1)}^2} + {{(y - 0)}^2}} $
$ = \sqrt {{{(x + 1)}^2} + {y^2}} $
Substitute $\sqrt {{{(x - 1)}^2} + {y^2}} $for AQ and $\sqrt {{{(x + 1)}^2} + {y^2}} $for BQ in the given equation and calculate to obtain the required result.
$\sqrt {{{(x - 1)}^2} + {y^2}} - \sqrt {{{(x + 1)}^2} + {y^2}} = \pm 1$
Square both sides of the equation,
$\Rightarrow {\left( {\sqrt {{{(x - 1)}^2} + {y^2}} - \sqrt {{{(x + 1)}^2} + {y^2}} } \right)^2} = {\left( { \pm 1} \right)^2}$
$\Rightarrow{\left( {\sqrt {{{(x - 1)}^2} + {y^2}} } \right)^2} + {\left( {\sqrt {{{(x + 1)}^2} + {y^2}} } \right)^2} - 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} = 1$
$\Rightarrow {(x - 1)^2} + {y^2} + {(x + 1)^2} + {y^2} - 1 = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} $
$\Rightarrow {x^2} - 2x + 1 + {y^2} + {x^2} + 2x + 1 + {y^2} - 1 = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} $
$\Rightarrow 2{x^2} + 2{y^2} + 1 = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} $
Square both sides of the equation,
$\Rightarrow {\left( {2{x^2} + 2{y^2} + 1} \right)^2} = {\left( {2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} } \right)^2}$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4\left[ {\left( {{{(x - 1)}^2} + {y^2}} \right)\left( {{{(x + 1)}^2} + {y^2}} \right)} \right]$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4\left[ {\left( {{x^2} + {y^2} - 2x + 1} \right)\left( {{x^2} + {y^2} + 2x + 1} \right)} \right]$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4\left[ \begin{array}{l}{x^4} + {x^2}{y^2} + 2{x^3} + {x^2} + {x^2}{y^2} + {y^4} + 2x{y^2} + {y^2} - 2{x^3} - 2x{y^2} - 4{x^2}\\ - 2x + {x^2} + {y^2} + 2x + 1\end{array} \right]$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4\left[ {{x^4} + {y^4} + 2{x^2}{y^2} - 2{x^2} + 2{y^2} + 1} \right]$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4{x^4} + 4{y^4} + 8{x^2}{y^2} + 8{y^2} - 8{x^2} + 4$
$\Rightarrow 12{x^2} - 4{y^2} = 3$
Option ‘A’ is correct
Note: When solving the given problems like this students often do a common mistake that is they square the equation $2{x^2} + 2{y^2} = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} - 1$ without subtracting 1 from each side of the equation and for that reason only they were not able to remove the radical sign. So in this step we need to take the square of the term $2{x^2} + 2{y^2} + 1 = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} $ to remove the radical sign otherwise it is not possible to remove the radical sign and get the desired answer.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

