
Two points A and B have coordinates $(1,0)$ and $( - 1,0)$ respectively and Q is a point which satisfies the relation $AQ - BQ = \pm 1$ . Then find the locus of Q.
A.$12{x^2} - 4{y^2} = 3$
B. $12{x^2} - 4{y^2} + 3 = 3$
C. $12{x^2} + 4{y^2} = 3$
D. $12{x^2} + 4{y^2} + 3 = 3$
Answer
163.5k+ views
Hint: First let the coordinate of Q, then apply the distance formula and obtain the distance between A, Q and B, Q. Substitute the obtained distance in the given equation and calculate to obtain the required locus.
Formula Used:
The distance between the points $(a,b)$ and $(c,d)$ is
$\sqrt {{{\left( {c - a} \right)}^2} + {{\left( {d - b} \right)}^2}} $ .
${(a + b)^2} = {a^2} + 2ab + {b^2}$
${(a - b)^2} = {a^2} - 2ab + {b^2}$
${(a + b + c)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca$
Complete step by step solution:
Suppose the coordinate of Q is $\left( {x,y} \right)$ .
Then,
$AQ = \sqrt {{{(x - 1)}^2} + {{(y - 0)}^2}} $
$ = \sqrt {{{(x - 1)}^2} + {y^2}} $
And,
$BQ = \sqrt {{{(x + 1)}^2} + {{(y - 0)}^2}} $
$ = \sqrt {{{(x + 1)}^2} + {y^2}} $
Substitute $\sqrt {{{(x - 1)}^2} + {y^2}} $for AQ and $\sqrt {{{(x + 1)}^2} + {y^2}} $for BQ in the given equation and calculate to obtain the required result.
$\sqrt {{{(x - 1)}^2} + {y^2}} - \sqrt {{{(x + 1)}^2} + {y^2}} = \pm 1$
Square both sides of the equation,
$\Rightarrow {\left( {\sqrt {{{(x - 1)}^2} + {y^2}} - \sqrt {{{(x + 1)}^2} + {y^2}} } \right)^2} = {\left( { \pm 1} \right)^2}$
$\Rightarrow{\left( {\sqrt {{{(x - 1)}^2} + {y^2}} } \right)^2} + {\left( {\sqrt {{{(x + 1)}^2} + {y^2}} } \right)^2} - 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} = 1$
$\Rightarrow {(x - 1)^2} + {y^2} + {(x + 1)^2} + {y^2} - 1 = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} $
$\Rightarrow {x^2} - 2x + 1 + {y^2} + {x^2} + 2x + 1 + {y^2} - 1 = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} $
$\Rightarrow 2{x^2} + 2{y^2} + 1 = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} $
Square both sides of the equation,
$\Rightarrow {\left( {2{x^2} + 2{y^2} + 1} \right)^2} = {\left( {2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} } \right)^2}$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4\left[ {\left( {{{(x - 1)}^2} + {y^2}} \right)\left( {{{(x + 1)}^2} + {y^2}} \right)} \right]$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4\left[ {\left( {{x^2} + {y^2} - 2x + 1} \right)\left( {{x^2} + {y^2} + 2x + 1} \right)} \right]$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4\left[ \begin{array}{l}{x^4} + {x^2}{y^2} + 2{x^3} + {x^2} + {x^2}{y^2} + {y^4} + 2x{y^2} + {y^2} - 2{x^3} - 2x{y^2} - 4{x^2}\\ - 2x + {x^2} + {y^2} + 2x + 1\end{array} \right]$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4\left[ {{x^4} + {y^4} + 2{x^2}{y^2} - 2{x^2} + 2{y^2} + 1} \right]$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4{x^4} + 4{y^4} + 8{x^2}{y^2} + 8{y^2} - 8{x^2} + 4$
$\Rightarrow 12{x^2} - 4{y^2} = 3$
Option ‘A’ is correct
Note: When solving the given problems like this students often do a common mistake that is they square the equation $2{x^2} + 2{y^2} = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} - 1$ without subtracting 1 from each side of the equation and for that reason only they were not able to remove the radical sign. So in this step we need to take the square of the term $2{x^2} + 2{y^2} + 1 = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} $ to remove the radical sign otherwise it is not possible to remove the radical sign and get the desired answer.
Formula Used:
The distance between the points $(a,b)$ and $(c,d)$ is
$\sqrt {{{\left( {c - a} \right)}^2} + {{\left( {d - b} \right)}^2}} $ .
${(a + b)^2} = {a^2} + 2ab + {b^2}$
${(a - b)^2} = {a^2} - 2ab + {b^2}$
${(a + b + c)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca$
Complete step by step solution:
Suppose the coordinate of Q is $\left( {x,y} \right)$ .
Then,
$AQ = \sqrt {{{(x - 1)}^2} + {{(y - 0)}^2}} $
$ = \sqrt {{{(x - 1)}^2} + {y^2}} $
And,
$BQ = \sqrt {{{(x + 1)}^2} + {{(y - 0)}^2}} $
$ = \sqrt {{{(x + 1)}^2} + {y^2}} $
Substitute $\sqrt {{{(x - 1)}^2} + {y^2}} $for AQ and $\sqrt {{{(x + 1)}^2} + {y^2}} $for BQ in the given equation and calculate to obtain the required result.
$\sqrt {{{(x - 1)}^2} + {y^2}} - \sqrt {{{(x + 1)}^2} + {y^2}} = \pm 1$
Square both sides of the equation,
$\Rightarrow {\left( {\sqrt {{{(x - 1)}^2} + {y^2}} - \sqrt {{{(x + 1)}^2} + {y^2}} } \right)^2} = {\left( { \pm 1} \right)^2}$
$\Rightarrow{\left( {\sqrt {{{(x - 1)}^2} + {y^2}} } \right)^2} + {\left( {\sqrt {{{(x + 1)}^2} + {y^2}} } \right)^2} - 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} = 1$
$\Rightarrow {(x - 1)^2} + {y^2} + {(x + 1)^2} + {y^2} - 1 = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} $
$\Rightarrow {x^2} - 2x + 1 + {y^2} + {x^2} + 2x + 1 + {y^2} - 1 = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} $
$\Rightarrow 2{x^2} + 2{y^2} + 1 = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} $
Square both sides of the equation,
$\Rightarrow {\left( {2{x^2} + 2{y^2} + 1} \right)^2} = {\left( {2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} } \right)^2}$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4\left[ {\left( {{{(x - 1)}^2} + {y^2}} \right)\left( {{{(x + 1)}^2} + {y^2}} \right)} \right]$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4\left[ {\left( {{x^2} + {y^2} - 2x + 1} \right)\left( {{x^2} + {y^2} + 2x + 1} \right)} \right]$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4\left[ \begin{array}{l}{x^4} + {x^2}{y^2} + 2{x^3} + {x^2} + {x^2}{y^2} + {y^4} + 2x{y^2} + {y^2} - 2{x^3} - 2x{y^2} - 4{x^2}\\ - 2x + {x^2} + {y^2} + 2x + 1\end{array} \right]$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4\left[ {{x^4} + {y^4} + 2{x^2}{y^2} - 2{x^2} + 2{y^2} + 1} \right]$
$\Rightarrow 4{x^4} + 4{y^4} + 1 + 8{x^2}{y^2} + 4{y^2} + 4{x^2} = 4{x^4} + 4{y^4} + 8{x^2}{y^2} + 8{y^2} - 8{x^2} + 4$
$\Rightarrow 12{x^2} - 4{y^2} = 3$
Option ‘A’ is correct
Note: When solving the given problems like this students often do a common mistake that is they square the equation $2{x^2} + 2{y^2} = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} - 1$ without subtracting 1 from each side of the equation and for that reason only they were not able to remove the radical sign. So in this step we need to take the square of the term $2{x^2} + 2{y^2} + 1 = 2\sqrt {{{(x - 1)}^2} + {y^2}} \sqrt {{{(x + 1)}^2} + {y^2}} $ to remove the radical sign otherwise it is not possible to remove the radical sign and get the desired answer.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
