
Two parallel infinite line charges $ + \lambda $ and $ - \lambda $ are placed with a separation distance R in free space. The net electric field exactly midway between the two line charges is
(A) Zero
(B) $\dfrac{{2\lambda }}{{\pi {E_0}R}}$
(C) $\dfrac{\lambda }{{\pi {E_0}R}}$
(D) $\dfrac{1}{{2\pi {E_0}R}}$
Answer
233.1k+ views
Hint: The direction can be identified by seeing the distance or separation between the charges as: At exactly midway so the distance can be exactly half so here, the parallel infinite charges both positive and negative charges mean in the same direction.
Formula used:
Different formulas will be used to solve the problem which is mentioned below as:
$ {E_1} = \dfrac{\lambda }{{2\pi {E_0}\dfrac{R}{2}}} \\
{E_2} = \dfrac{{ - \lambda }}{{2\pi {E_0}\dfrac{R}{2}}} \\
$
Where R is distance between the separation
${E_0}$ Is epsilon value
E is the electrical field
$\lambda $ Is the positive and negative both are the infinite line charge
Complete Step by step answer:
As we know that a point charge is a hypothetical charge located at a single point in space.
And then the electric field is a vector. There are multiple point charges present. The net electric field at any point is the vector sum of the electric fields due to the individual charges.
By this image we can understand that separation R so as it’s at its exactly midway so we can take $\dfrac{R}{2}$ as their mid separation and this both the charges are in same direction
As parallel is given so both the direction will be same let be left to right
${E_1} = \dfrac{\lambda }{{2\pi {E_0}\dfrac{R}{2}}}$ and ${E_2} = \dfrac{{ - \lambda }}{{2\pi {E_0}\dfrac{R}{2}}}$
So, the net energy is,
${E_{net}} = {E_1} + {E_2}$
${E_{net}} = \dfrac{\lambda }{{2\pi {E_0}\dfrac{R}{2}}} + \dfrac{{ - \lambda }}{{2\pi {E_0}\dfrac{R}{2}}}$
$ \Rightarrow {E_{net}} = \dfrac{{2\lambda }}{{\pi {E_0}R}}$ So we get,
Hence the net electric field is: ${E_{net}} = \dfrac{{2\lambda }}{{\pi {E_0}R}}$
Hence the correct option is B that is $\dfrac{{2\lambda }}{{\pi {E_0}R}}$.
Note:
In question probably we get the hint so first we need to think about the direction of the charges. And then what is the distance of separation between the charges.
So first basically the electric field of an individual and then to get a total combining electric fields of the charges.
Formula used:
Different formulas will be used to solve the problem which is mentioned below as:
$ {E_1} = \dfrac{\lambda }{{2\pi {E_0}\dfrac{R}{2}}} \\
{E_2} = \dfrac{{ - \lambda }}{{2\pi {E_0}\dfrac{R}{2}}} \\
$
Where R is distance between the separation
${E_0}$ Is epsilon value
E is the electrical field
$\lambda $ Is the positive and negative both are the infinite line charge
Complete Step by step answer:
As we know that a point charge is a hypothetical charge located at a single point in space.
And then the electric field is a vector. There are multiple point charges present. The net electric field at any point is the vector sum of the electric fields due to the individual charges.
By this image we can understand that separation R so as it’s at its exactly midway so we can take $\dfrac{R}{2}$ as their mid separation and this both the charges are in same direction
As parallel is given so both the direction will be same let be left to right
${E_1} = \dfrac{\lambda }{{2\pi {E_0}\dfrac{R}{2}}}$ and ${E_2} = \dfrac{{ - \lambda }}{{2\pi {E_0}\dfrac{R}{2}}}$
So, the net energy is,
${E_{net}} = {E_1} + {E_2}$
${E_{net}} = \dfrac{\lambda }{{2\pi {E_0}\dfrac{R}{2}}} + \dfrac{{ - \lambda }}{{2\pi {E_0}\dfrac{R}{2}}}$
$ \Rightarrow {E_{net}} = \dfrac{{2\lambda }}{{\pi {E_0}R}}$ So we get,
Hence the net electric field is: ${E_{net}} = \dfrac{{2\lambda }}{{\pi {E_0}R}}$
Hence the correct option is B that is $\dfrac{{2\lambda }}{{\pi {E_0}R}}$.
Note:
In question probably we get the hint so first we need to think about the direction of the charges. And then what is the distance of separation between the charges.
So first basically the electric field of an individual and then to get a total combining electric fields of the charges.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

