
Two liquids at temperatures $60^\circ {\text{C}}$ and $20^\circ {\text{C}}$ respectively have masses in the ratio $3 : 4$ and their specific heats are in the ratio $4 : 5$. If the two liquids are mixed, then find the resultant temperature.
A) $70^\circ {\text{C}}$
B) $50^\circ {\text{C}}$
C) $40^\circ {\text{C}}$
D) $35^\circ {\text{C}}$
Answer
232.8k+ views
Hint: When the two liquids are mixed together, heat rejected from the liquid with the higher temperature will be absorbed by the liquid with the lower temperature. So we can say that the energy is conserved during the mixing of these two liquids. The amount of heat rejected or absorbed will be the product of the mass of the liquid, its specific heat and its change in temperature.
Formula used:
The amount of heat rejected or absorbed by a liquid is given by, $\Delta Q = ms\left( {{T_f} - {T_i}} \right)$ where $m$ is the mass of the liquid, $s$ is its specific heat, ${T_i}$ and ${T_f}$ are its initial and final temperatures.
Complete step by step solution:
List the known parameters of the two liquids.
Let the two liquids involved be named as A and B.
The temperature of liquid A is given to be ${T_A} = 60^\circ {\text{C}}$ and the temperature of liquid B is given to be ${T_B} = 20^\circ {\text{C}}$ .
Let ${m_A}$ and ${m_B}$ be the masses of the liquids A and B respectively.
Also, let ${s_A}$ and ${s_B}$ be the specific heats of the liquids A and B respectively.
Then it is given that $\dfrac{{{m_A}}}{{{m_B}}} = \dfrac{3}{4}$ and $\dfrac{{{s_A}}}{{{s_B}}} = \dfrac{4}{5}$ .
Let $T$ be the resultant temperature of the mixture of the two liquids.
Express the amount of heat rejected by liquid A and the amount of heat absorbed by liquid B.
The amount of heat rejected by liquid A can be expressed as $\Delta {Q_A} = {m_A}{s_A}\left( {{T_A} - T} \right)$ ------- (1)
The amount of heat absorbed by liquid B can be expressed as $\Delta {Q_B} = {m_B}{s_B}\left( {T - {T_B}} \right)$ ------- (2)
Apply the conservation of heat energy during mixing to obtain the resultant temperature.
While mixing, the amount of heat lost by liquid A will be the amount of heat gained by liquid B.
$ \Rightarrow \Delta {Q_A} = \Delta {Q_B}$ ------- (3)
Substituting equations (1) and (2) in equation (3) we get, ${m_A}{s_A}\left( {{T_A} - T} \right) = {m_B}{s_B}\left( {T - {T_B}} \right)$
$ \Rightarrow \dfrac{{{m_A}}}{{{m_B}}} \times \dfrac{{{s_A}}}{{{s_B}}} \times \left( {{T_A} - T} \right) = \left( {T - {T_B}} \right)$ ------- (4)
Substituting for ${T_A} = 60^\circ {\text{C}}$ , ${T_B} = 20^\circ {\text{C}}$ , $\dfrac{{{m_A}}}{{{m_B}}} = \dfrac{3}{4}$ and $\dfrac{{{s_A}}}{{{s_B}}} = \dfrac{4}{5}$ in equation (4) we get, $\dfrac{3}{4} \times \dfrac{4}{5} \times \left( {60 - T} \right) = \left( {T - 20} \right)$
$ \Rightarrow 180 - 3T = 5T - 100 \Rightarrow 280 = 2T$
$ \Rightarrow T = 35^\circ {\text{C}}$
$\therefore $ the resultant temperature is obtained to be $T = 35^\circ {\text{C}}$ .
Hence the correct option is D.
Note: When liquid A of higher temperature and liquid B of a lower temperature are mixed together, the resultant temperature $T$ of the mixture will have a temperature less than the higher temperature of liquid A but higher than the lower temperature of liquid B i.e., ${T_A} > T > {T_B}$ . So while expressing the heat lost by liquid A, we take the temperature change to be ${T_A} - T$ in equation (1) and while expressing the heat gained by liquid B, we take the temperature change to be $T - {T_B}$ in equation (2).
Formula used:
The amount of heat rejected or absorbed by a liquid is given by, $\Delta Q = ms\left( {{T_f} - {T_i}} \right)$ where $m$ is the mass of the liquid, $s$ is its specific heat, ${T_i}$ and ${T_f}$ are its initial and final temperatures.
Complete step by step solution:
List the known parameters of the two liquids.
Let the two liquids involved be named as A and B.
The temperature of liquid A is given to be ${T_A} = 60^\circ {\text{C}}$ and the temperature of liquid B is given to be ${T_B} = 20^\circ {\text{C}}$ .
Let ${m_A}$ and ${m_B}$ be the masses of the liquids A and B respectively.
Also, let ${s_A}$ and ${s_B}$ be the specific heats of the liquids A and B respectively.
Then it is given that $\dfrac{{{m_A}}}{{{m_B}}} = \dfrac{3}{4}$ and $\dfrac{{{s_A}}}{{{s_B}}} = \dfrac{4}{5}$ .
Let $T$ be the resultant temperature of the mixture of the two liquids.
Express the amount of heat rejected by liquid A and the amount of heat absorbed by liquid B.
The amount of heat rejected by liquid A can be expressed as $\Delta {Q_A} = {m_A}{s_A}\left( {{T_A} - T} \right)$ ------- (1)
The amount of heat absorbed by liquid B can be expressed as $\Delta {Q_B} = {m_B}{s_B}\left( {T - {T_B}} \right)$ ------- (2)
Apply the conservation of heat energy during mixing to obtain the resultant temperature.
While mixing, the amount of heat lost by liquid A will be the amount of heat gained by liquid B.
$ \Rightarrow \Delta {Q_A} = \Delta {Q_B}$ ------- (3)
Substituting equations (1) and (2) in equation (3) we get, ${m_A}{s_A}\left( {{T_A} - T} \right) = {m_B}{s_B}\left( {T - {T_B}} \right)$
$ \Rightarrow \dfrac{{{m_A}}}{{{m_B}}} \times \dfrac{{{s_A}}}{{{s_B}}} \times \left( {{T_A} - T} \right) = \left( {T - {T_B}} \right)$ ------- (4)
Substituting for ${T_A} = 60^\circ {\text{C}}$ , ${T_B} = 20^\circ {\text{C}}$ , $\dfrac{{{m_A}}}{{{m_B}}} = \dfrac{3}{4}$ and $\dfrac{{{s_A}}}{{{s_B}}} = \dfrac{4}{5}$ in equation (4) we get, $\dfrac{3}{4} \times \dfrac{4}{5} \times \left( {60 - T} \right) = \left( {T - 20} \right)$
$ \Rightarrow 180 - 3T = 5T - 100 \Rightarrow 280 = 2T$
$ \Rightarrow T = 35^\circ {\text{C}}$
$\therefore $ the resultant temperature is obtained to be $T = 35^\circ {\text{C}}$ .
Hence the correct option is D.
Note: When liquid A of higher temperature and liquid B of a lower temperature are mixed together, the resultant temperature $T$ of the mixture will have a temperature less than the higher temperature of liquid A but higher than the lower temperature of liquid B i.e., ${T_A} > T > {T_B}$ . So while expressing the heat lost by liquid A, we take the temperature change to be ${T_A} - T$ in equation (1) and while expressing the heat gained by liquid B, we take the temperature change to be $T - {T_B}$ in equation (2).
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

