
Two identical spheres carrying charges - 9 μC and 5 μC respectively are kept in contact and then separated from each other. Point out the true statement from the following. In each sphere
1) 1.25 x ${10^{13}}$ electrons are in deficit
2) 1.25 x ${10^{13}}$ electrons are in excess
3) 2.15 x ${10^{13}}$ electrons are in excess
4) 2.15 x ${10^{13}}$ electrons are in deficit
Answer
233.1k+ views
Hint: When two identical spheres are brought in contact to each other, the charges redistribute. And final charge on each sphere is given by Q = \[\dfrac{{{{\text{q}}_{\text{1}}}{\text{ + }}{{\text{q}}_{\text{2}}}}}{2}\]. Hence, now find out the number of electrons by using the formula = Magnitude of charge on each sphere / Charge on each electron to obtain the answer.
Complete step-by-step answer:
Given,
Two identical spheres carrying charges ${{\text{q}}_{\text{1}}}$ = -9 μC and ${{\text{q}}_{\text{2}}}$ = 5 μC respectively are kept in contact and then separated from each other.
When two identical spheres are kept in contact and then separated, their charges redistribute.
To find whether the electrons are in excess or deficit, we have to find out the net charge on the system i.e. Final charge on each sphere after they are separated.
Final charge on each of sphere, Q = \[\dfrac{{{{\text{q}}_{\text{1}}}{\text{ + }}{{\text{q}}_{\text{2}}}}}{2} = \dfrac{{ - 9 + 5}}{2} = - 2\mu C\]
Negative signs indicate that charge on each sphere is in excess. (Why? See Note at the end of answer)
So, number of electrons are in excess is given by,
Magnitude of charge on each sphere / Charge on each electron. Hence, substituting values we have :
$
\dfrac{{2\mu C}}{{1.6 \times {{10}^{ - 19}}}} \\
\Rightarrow \dfrac{{2 \times {{10}^{ - 6}}C}}{{1.6 \times {{10}^{ - 19}}}} \\
\Rightarrow 1.25 \times {10^{ - 13}} \\
$
Therefore $1.25$ × ${10^{13}}$ electrons are in excess.
Note: Generally, we consider electrons excess when the overall charge (Q) on each sphere has a negative sign and since charge on electrons is negative; hence we say that electrons are in excess. Had they been positive, we could say that electrons are in deficit.
Complete step-by-step answer:
Given,
Two identical spheres carrying charges ${{\text{q}}_{\text{1}}}$ = -9 μC and ${{\text{q}}_{\text{2}}}$ = 5 μC respectively are kept in contact and then separated from each other.
When two identical spheres are kept in contact and then separated, their charges redistribute.
To find whether the electrons are in excess or deficit, we have to find out the net charge on the system i.e. Final charge on each sphere after they are separated.
Final charge on each of sphere, Q = \[\dfrac{{{{\text{q}}_{\text{1}}}{\text{ + }}{{\text{q}}_{\text{2}}}}}{2} = \dfrac{{ - 9 + 5}}{2} = - 2\mu C\]
Negative signs indicate that charge on each sphere is in excess. (Why? See Note at the end of answer)
So, number of electrons are in excess is given by,
Magnitude of charge on each sphere / Charge on each electron. Hence, substituting values we have :
$
\dfrac{{2\mu C}}{{1.6 \times {{10}^{ - 19}}}} \\
\Rightarrow \dfrac{{2 \times {{10}^{ - 6}}C}}{{1.6 \times {{10}^{ - 19}}}} \\
\Rightarrow 1.25 \times {10^{ - 13}} \\
$
Therefore $1.25$ × ${10^{13}}$ electrons are in excess.
Note: Generally, we consider electrons excess when the overall charge (Q) on each sphere has a negative sign and since charge on electrons is negative; hence we say that electrons are in excess. Had they been positive, we could say that electrons are in deficit.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

