
Two forces \[\begin{align} & 3\text{ }N\text{ and 2 }N\text{ are at angle }\theta \text{ such that resultant is }R.\text{ The first is now increased to 6 }N\text{ and the resultant becomes } \\ & \text{2}R.\text{ The value of }\theta \text{ is}\text{.} \\
\end{align}\]
(A) 30
(B) 60
(C) 90
(D) 120
Answer
136.8k+ views
Hint: Use triangle law of vector addition, according to which if two vectors acting on a particle at the same time are represented in magnitude and direction by two sides of a triangle taken in one order, then their resultant vector is represented in magnitude and direction by the third side of triangle taken in opposite order.
Then use the Given condition, and find the value of $\theta $ .
Formula used The resultant Force is given by
$R=\sqrt{{{\left( {{F}_{1}} \right)}^{2}}+{{\left( {{F}_{2}} \right)}^{2}}+2{{F}_{1}}{{F}_{2}}\cos \theta }$
$\begin{align}
& {{F}_{1}}\text{ is first force} \\
& {{\text{F}}_{2}}\text{ is second force} \\
& \text{and }\theta \text{ is angle between the force}\text{.} \\
\end{align}$
Complete step by step solution
We have $\begin{align}
& {{F}_{1}}=3N \\
& {{F}_{2}}=2N \\
\end{align}$
The resultant force is,
\[\begin{align}
& R=\sqrt{{{\left( 3 \right)}^{2}}+{{\left( 2 \right)}^{2}}+\left( 3 \right)\left( 2 \right)\cos \theta } \\
& {{R}^{2}}=9+4+12\cos \theta \\
\end{align}\]
\[{{R}^{2}}=13+12\cos \theta \]……. (1)
Now force ${{F}_{1}}$ is increased to $6N$ and resultant become $2R.$
$\begin{align}
& 2R=\sqrt{{{\left( 6 \right)}^{2}}+{{\left( 2 \right)}^{2}}+2\left( 6 \right)\left( 2 \right)\text{ }\cos \theta } \\
& 4{{R}^{2}}=36+4+24\text{ }\cos \theta \\
\end{align}$
$4{{R}^{2}}=40+24\text{ cos}\theta $…….. (2)
Put the value of ${{R}^{2}}\text{ from }$ equation (1) into equation (2)
\[\begin{align}
& 4\left( 13+12\text{ cos}\theta \right)=40+24\text{ cos}\theta \\
& \text{52+48 cos}\theta =40+24\text{ cos}\theta \\
& \text{12+24 cos}\theta \text{=0} \\
\end{align}\]
\[\begin{align}
& \text{ }\cos \theta =-\dfrac{1}{2} \\
& \text{ cos}\theta \text{=180}{}^\circ -60{}^\circ \\
& \text{ }\theta =120{}^\circ \\
& \text{ The value of }\theta \text{ is }120{}^\circ \\
\end{align}\]
Note: To find the resultant of the two vectors, must read triangle law of vector addition.
Also read,
Parallelogram law of vectors and polygon law of vectors.
By Graphical and Analytical method both.
Then use the Given condition, and find the value of $\theta $ .
Formula used The resultant Force is given by
$R=\sqrt{{{\left( {{F}_{1}} \right)}^{2}}+{{\left( {{F}_{2}} \right)}^{2}}+2{{F}_{1}}{{F}_{2}}\cos \theta }$
$\begin{align}
& {{F}_{1}}\text{ is first force} \\
& {{\text{F}}_{2}}\text{ is second force} \\
& \text{and }\theta \text{ is angle between the force}\text{.} \\
\end{align}$
Complete step by step solution
We have $\begin{align}
& {{F}_{1}}=3N \\
& {{F}_{2}}=2N \\
\end{align}$
The resultant force is,
\[\begin{align}
& R=\sqrt{{{\left( 3 \right)}^{2}}+{{\left( 2 \right)}^{2}}+\left( 3 \right)\left( 2 \right)\cos \theta } \\
& {{R}^{2}}=9+4+12\cos \theta \\
\end{align}\]
\[{{R}^{2}}=13+12\cos \theta \]……. (1)
Now force ${{F}_{1}}$ is increased to $6N$ and resultant become $2R.$
$\begin{align}
& 2R=\sqrt{{{\left( 6 \right)}^{2}}+{{\left( 2 \right)}^{2}}+2\left( 6 \right)\left( 2 \right)\text{ }\cos \theta } \\
& 4{{R}^{2}}=36+4+24\text{ }\cos \theta \\
\end{align}$
$4{{R}^{2}}=40+24\text{ cos}\theta $…….. (2)
Put the value of ${{R}^{2}}\text{ from }$ equation (1) into equation (2)
\[\begin{align}
& 4\left( 13+12\text{ cos}\theta \right)=40+24\text{ cos}\theta \\
& \text{52+48 cos}\theta =40+24\text{ cos}\theta \\
& \text{12+24 cos}\theta \text{=0} \\
\end{align}\]
\[\begin{align}
& \text{ }\cos \theta =-\dfrac{1}{2} \\
& \text{ cos}\theta \text{=180}{}^\circ -60{}^\circ \\
& \text{ }\theta =120{}^\circ \\
& \text{ The value of }\theta \text{ is }120{}^\circ \\
\end{align}\]
Note: To find the resultant of the two vectors, must read triangle law of vector addition.
Also read,
Parallelogram law of vectors and polygon law of vectors.
By Graphical and Analytical method both.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to find Oxidation Number - Important Concepts for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

A body crosses the topmost point of a vertical circle class 11 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

At which height is gravity zero class 11 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
