
Two forces \[\begin{align} & 3\text{ }N\text{ and 2 }N\text{ are at angle }\theta \text{ such that resultant is }R.\text{ The first is now increased to 6 }N\text{ and the resultant becomes } \\ & \text{2}R.\text{ The value of }\theta \text{ is}\text{.} \\
\end{align}\]
(A) 30
(B) 60
(C) 90
(D) 120
Answer
219.9k+ views
Hint: Use triangle law of vector addition, according to which if two vectors acting on a particle at the same time are represented in magnitude and direction by two sides of a triangle taken in one order, then their resultant vector is represented in magnitude and direction by the third side of triangle taken in opposite order.
Then use the Given condition, and find the value of $\theta $ .
Formula used The resultant Force is given by
$R=\sqrt{{{\left( {{F}_{1}} \right)}^{2}}+{{\left( {{F}_{2}} \right)}^{2}}+2{{F}_{1}}{{F}_{2}}\cos \theta }$
$\begin{align}
& {{F}_{1}}\text{ is first force} \\
& {{\text{F}}_{2}}\text{ is second force} \\
& \text{and }\theta \text{ is angle between the force}\text{.} \\
\end{align}$
Complete step by step solution
We have $\begin{align}
& {{F}_{1}}=3N \\
& {{F}_{2}}=2N \\
\end{align}$
The resultant force is,
\[\begin{align}
& R=\sqrt{{{\left( 3 \right)}^{2}}+{{\left( 2 \right)}^{2}}+\left( 3 \right)\left( 2 \right)\cos \theta } \\
& {{R}^{2}}=9+4+12\cos \theta \\
\end{align}\]
\[{{R}^{2}}=13+12\cos \theta \]……. (1)
Now force ${{F}_{1}}$ is increased to $6N$ and resultant become $2R.$
$\begin{align}
& 2R=\sqrt{{{\left( 6 \right)}^{2}}+{{\left( 2 \right)}^{2}}+2\left( 6 \right)\left( 2 \right)\text{ }\cos \theta } \\
& 4{{R}^{2}}=36+4+24\text{ }\cos \theta \\
\end{align}$
$4{{R}^{2}}=40+24\text{ cos}\theta $…….. (2)
Put the value of ${{R}^{2}}\text{ from }$ equation (1) into equation (2)
\[\begin{align}
& 4\left( 13+12\text{ cos}\theta \right)=40+24\text{ cos}\theta \\
& \text{52+48 cos}\theta =40+24\text{ cos}\theta \\
& \text{12+24 cos}\theta \text{=0} \\
\end{align}\]
\[\begin{align}
& \text{ }\cos \theta =-\dfrac{1}{2} \\
& \text{ cos}\theta \text{=180}{}^\circ -60{}^\circ \\
& \text{ }\theta =120{}^\circ \\
& \text{ The value of }\theta \text{ is }120{}^\circ \\
\end{align}\]
Note: To find the resultant of the two vectors, must read triangle law of vector addition.
Also read,
Parallelogram law of vectors and polygon law of vectors.
By Graphical and Analytical method both.
Then use the Given condition, and find the value of $\theta $ .
Formula used The resultant Force is given by
$R=\sqrt{{{\left( {{F}_{1}} \right)}^{2}}+{{\left( {{F}_{2}} \right)}^{2}}+2{{F}_{1}}{{F}_{2}}\cos \theta }$
$\begin{align}
& {{F}_{1}}\text{ is first force} \\
& {{\text{F}}_{2}}\text{ is second force} \\
& \text{and }\theta \text{ is angle between the force}\text{.} \\
\end{align}$
Complete step by step solution
We have $\begin{align}
& {{F}_{1}}=3N \\
& {{F}_{2}}=2N \\
\end{align}$
The resultant force is,
\[\begin{align}
& R=\sqrt{{{\left( 3 \right)}^{2}}+{{\left( 2 \right)}^{2}}+\left( 3 \right)\left( 2 \right)\cos \theta } \\
& {{R}^{2}}=9+4+12\cos \theta \\
\end{align}\]
\[{{R}^{2}}=13+12\cos \theta \]……. (1)
Now force ${{F}_{1}}$ is increased to $6N$ and resultant become $2R.$
$\begin{align}
& 2R=\sqrt{{{\left( 6 \right)}^{2}}+{{\left( 2 \right)}^{2}}+2\left( 6 \right)\left( 2 \right)\text{ }\cos \theta } \\
& 4{{R}^{2}}=36+4+24\text{ }\cos \theta \\
\end{align}$
$4{{R}^{2}}=40+24\text{ cos}\theta $…….. (2)
Put the value of ${{R}^{2}}\text{ from }$ equation (1) into equation (2)
\[\begin{align}
& 4\left( 13+12\text{ cos}\theta \right)=40+24\text{ cos}\theta \\
& \text{52+48 cos}\theta =40+24\text{ cos}\theta \\
& \text{12+24 cos}\theta \text{=0} \\
\end{align}\]
\[\begin{align}
& \text{ }\cos \theta =-\dfrac{1}{2} \\
& \text{ cos}\theta \text{=180}{}^\circ -60{}^\circ \\
& \text{ }\theta =120{}^\circ \\
& \text{ The value of }\theta \text{ is }120{}^\circ \\
\end{align}\]
Note: To find the resultant of the two vectors, must read triangle law of vector addition.
Also read,
Parallelogram law of vectors and polygon law of vectors.
By Graphical and Analytical method both.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
Understanding Uniform Acceleration in Physics

Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Average and RMS Value in Electrical Circuits

Other Pages
NCERT Solutions for Class 11 Physics Chapter 6 System Of Particles And Rotational Motion 2025-26

Understanding Entropy Changes in Different Processes

Common Ion Effect: Concept, Applications, and Problem-Solving

Understanding Excess Pressure Inside a Liquid Drop

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory - 2025-26

Motion In A Plane Class 11 Physics Chapter 3 CBSE Notes - 2025-26

