
Two equal parabolas have the same focus and their axes are at right angles. A normal to one is perpendicular to normal to the other. Prove that the locus of the point of intersection of these normals is another parabola
Answer
214.5k+ views
Hint: Equation of normal to parabola \[{{y}^{2}}=4ax\] is given as \[y=mx-2am-a{{m}^{3}}\], where \[m\] is the slope of the normal.
We will consider the equation of one of the parabolas as \[{{y}^{2}}=4ax\].

So , its focus is \[S\left( a,0 \right)\].
We know, the equation of normal to the parabola in slope form is given as
\[y=mx-2am-a{{m}^{3}}....\left( i \right)\] , where \[m\] is the slope of the normal.
Now , we have to find the locus of intersection of the normal.
We will consider this point to be \[N\left( h,k \right)\].
Now, since \[N\left( h,k \right)\] is the point of intersection of the normals , so , it should lie on equation \[\left( i \right)\], i.e. the point \[N\left( h,k \right)\] should satisfy equation \[\left( i \right)\].
So , we will substitute \[x=h\] and \[y=k\] in equation \[\left( i \right)\].
On substituting \[x=h\] and \[y=k\] in equation \[\left( i \right)\] , we get
\[k=mh-2am-a{{m}^{3}}\]
Or , \[a{{m}^{3}}+m\left( 2a-h \right)+k=0....\left( ii \right)\]
Clearly, we can see that equation \[\left( ii \right)\] is a cubic equation in \[m\] , which is of the form \[a{{m}^{3}}+b{{m}^{2}}+cm+d=0\]. So , it should represent three lines passing through \[\left( h,k \right)\].
Now, in the question , it is given that two perpendicular normals pass through \[N\left( h,k \right)\]. So , out of these three lines , two lines must be perpendicular.
Now , let \[{{m}_{1}},{{m}_{2}}\] and \[{{m}_{3}}\] be three roots of equation \[\left( ii \right)\]. The roots of the equation \[\left( ii \right)\] are corresponding to the slopes of the three lines.
Now, we are given two of these lines are perpendicular.
We know , when two lines are perpendicular , the product of their slopes is equal to \[-1\] .
So, \[{{m}_{1}}{{m}_{2}}=-1....\left( iii \right)\]
We know , for a cubic equation of the form \[a{{m}^{3}}+b{{m}^{2}}+cm+d=0\], the product of the roots is given as \[\dfrac{-d}{a}\].
So , from equation \[\left( ii \right)\] , we have
\[{{m}_{1}}{{m}_{2}}{{m}_{3}}=\dfrac{-k}{a}\]
Since , \[{{m}_{1}}{{m}_{2}}=-1\text{ }\left( \text{from equation }iii \right)\]
So, \[{{m}_{3}}=\dfrac{k}{a}\]
Now , \[{{m}_{3}}\] is a root of equation \[\left( ii \right)\]. So , it should satisfy the equation.
So , \[a{{\left( \dfrac{k}{a} \right)}^{3}}+\dfrac{k}{a}\left( 2a-h \right)+k=0\]
Or \[\dfrac{{{k}^{3}}}{{{a}^{2}}}+2k-\dfrac{kh}{a}+k=0\]
Or \[{{k}^{2}}+3{{a}^{2}}-ah=0\]
Or \[{{k}^{2}}=a\left( h-3a \right)\]
Now , the locus of \[N\left( h,k \right)\] is given by replacing \[\left( h,k \right)\] by \[\left( x,y \right)\]
So, the locus of \[N\left( h,k \right)\] is given as \[{{y}^{2}}=a\left( x-3a \right)\] which is the equation of a parabola.
Note: The product of slopes of perpendicular lines is equal to \[-1\] and not \[1\]. Students generally get confused and make this mistake.
We will consider the equation of one of the parabolas as \[{{y}^{2}}=4ax\].

So , its focus is \[S\left( a,0 \right)\].
We know, the equation of normal to the parabola in slope form is given as
\[y=mx-2am-a{{m}^{3}}....\left( i \right)\] , where \[m\] is the slope of the normal.
Now , we have to find the locus of intersection of the normal.
We will consider this point to be \[N\left( h,k \right)\].
Now, since \[N\left( h,k \right)\] is the point of intersection of the normals , so , it should lie on equation \[\left( i \right)\], i.e. the point \[N\left( h,k \right)\] should satisfy equation \[\left( i \right)\].
So , we will substitute \[x=h\] and \[y=k\] in equation \[\left( i \right)\].
On substituting \[x=h\] and \[y=k\] in equation \[\left( i \right)\] , we get
\[k=mh-2am-a{{m}^{3}}\]
Or , \[a{{m}^{3}}+m\left( 2a-h \right)+k=0....\left( ii \right)\]
Clearly, we can see that equation \[\left( ii \right)\] is a cubic equation in \[m\] , which is of the form \[a{{m}^{3}}+b{{m}^{2}}+cm+d=0\]. So , it should represent three lines passing through \[\left( h,k \right)\].
Now, in the question , it is given that two perpendicular normals pass through \[N\left( h,k \right)\]. So , out of these three lines , two lines must be perpendicular.
Now , let \[{{m}_{1}},{{m}_{2}}\] and \[{{m}_{3}}\] be three roots of equation \[\left( ii \right)\]. The roots of the equation \[\left( ii \right)\] are corresponding to the slopes of the three lines.
Now, we are given two of these lines are perpendicular.
We know , when two lines are perpendicular , the product of their slopes is equal to \[-1\] .
So, \[{{m}_{1}}{{m}_{2}}=-1....\left( iii \right)\]
We know , for a cubic equation of the form \[a{{m}^{3}}+b{{m}^{2}}+cm+d=0\], the product of the roots is given as \[\dfrac{-d}{a}\].
So , from equation \[\left( ii \right)\] , we have
\[{{m}_{1}}{{m}_{2}}{{m}_{3}}=\dfrac{-k}{a}\]
Since , \[{{m}_{1}}{{m}_{2}}=-1\text{ }\left( \text{from equation }iii \right)\]
So, \[{{m}_{3}}=\dfrac{k}{a}\]
Now , \[{{m}_{3}}\] is a root of equation \[\left( ii \right)\]. So , it should satisfy the equation.
So , \[a{{\left( \dfrac{k}{a} \right)}^{3}}+\dfrac{k}{a}\left( 2a-h \right)+k=0\]
Or \[\dfrac{{{k}^{3}}}{{{a}^{2}}}+2k-\dfrac{kh}{a}+k=0\]
Or \[{{k}^{2}}+3{{a}^{2}}-ah=0\]
Or \[{{k}^{2}}=a\left( h-3a \right)\]
Now , the locus of \[N\left( h,k \right)\] is given by replacing \[\left( h,k \right)\] by \[\left( x,y \right)\]
So, the locus of \[N\left( h,k \right)\] is given as \[{{y}^{2}}=a\left( x-3a \right)\] which is the equation of a parabola.
Note: The product of slopes of perpendicular lines is equal to \[-1\] and not \[1\]. Students generally get confused and make this mistake.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

