
Two cells of e.m.f. ${E_1}$ and ${E_2}$ are joined in series and the balancing length of the potential wire is $625$ cm. If the terminals of ${E_1}$ are reversed, the balancing length obtained is $125$ cm. Given ${E_2} > {E_1}$ , the ratio ${E_1}:{E_2}$ will be
(A) $2:3$
(B) $5:1$
(C) $3:2$
(D) $1:5$
Answer
218.1k+ views
Hint: The balancing length of the potentiometer when the two cells are connected in series is given. When the cell ${E_1}$ is connected in reverse manner the balancing length is given. The balancing length in the potentiometer is directly proportional to the sum of the emf of the cells. Using this, we can find the required relation.
Complete step by step solution: The working principle of the potentiometer depends on the potential across any portion of the wire which is directly proportional to the length of the wire. Potentiometer can be used to find the emf of an unknown cell. Potentiometer is also used to determine the internal resistance of the cell.
The balancing length of the potentiometer is proportional to the net emf of the cells.
When the cells are connected in series, the net emf is \[{E_2} + {E_1}\] and the balancing length is \[652\] cm.
When the cell ${E_1}$ is reversed, the net emf of the cell will be \[{E_2} - {E_1}\] and this balancing length is given as $125$ cm. As balancing length is proportional to net emf thus, we have:
\[{E_2} + {E_1}\,\alpha \,625\] --equation \[1\]
And \[{E_2} - {E_1}\,\alpha \,125\] --equation \[2\]
Dividing equation \[1\] by equation \[2\] , we get
\[\dfrac{{{E_2} + {E_1}}}{{{E_2} - {E_1}}}\, = \dfrac{{625\,}}{{125}}\]
\[ \Rightarrow \dfrac{{{E_2} + {E_1}}}{{{E_2} - {E_1}}}\, = \dfrac{5}{1}\]
We need to find the ratio ${E_1}:{E_2}$ , solving the above equation we get.
\[ \Rightarrow {E_2} + {E_1}\, = 5\left( {{E_2} - {E_1}} \right)\]
\[ \Rightarrow {E_2} + {E_1}\, = 5{E_2} - 5{E_1}\]
\[ \Rightarrow 6{E_1}\, = 4{E_2}\]
\[ \Rightarrow \dfrac{{{E_1}}}{{{E_2}}} = \dfrac{4}{6} = \dfrac{2}{3}\]
\[ \Rightarrow {E_1}:{E_2} = 2:3\]
The required ratio ${E_1}:{E_2}$ is \[2:3\]
Therefore, \[1\] is the correct option.
Note: The net emf of the potentiometer is proportional to the balancing length of the potentiometer. It is given that ${E_2} > {E_1}$ thus, we must take the difference as $\left( {{E_2} - {E_1}} \right)$ . When the cell is reversed the balancing length decreases as the net emf of the cell decreases.
Complete step by step solution: The working principle of the potentiometer depends on the potential across any portion of the wire which is directly proportional to the length of the wire. Potentiometer can be used to find the emf of an unknown cell. Potentiometer is also used to determine the internal resistance of the cell.
The balancing length of the potentiometer is proportional to the net emf of the cells.
When the cells are connected in series, the net emf is \[{E_2} + {E_1}\] and the balancing length is \[652\] cm.
When the cell ${E_1}$ is reversed, the net emf of the cell will be \[{E_2} - {E_1}\] and this balancing length is given as $125$ cm. As balancing length is proportional to net emf thus, we have:
\[{E_2} + {E_1}\,\alpha \,625\] --equation \[1\]
And \[{E_2} - {E_1}\,\alpha \,125\] --equation \[2\]
Dividing equation \[1\] by equation \[2\] , we get
\[\dfrac{{{E_2} + {E_1}}}{{{E_2} - {E_1}}}\, = \dfrac{{625\,}}{{125}}\]
\[ \Rightarrow \dfrac{{{E_2} + {E_1}}}{{{E_2} - {E_1}}}\, = \dfrac{5}{1}\]
We need to find the ratio ${E_1}:{E_2}$ , solving the above equation we get.
\[ \Rightarrow {E_2} + {E_1}\, = 5\left( {{E_2} - {E_1}} \right)\]
\[ \Rightarrow {E_2} + {E_1}\, = 5{E_2} - 5{E_1}\]
\[ \Rightarrow 6{E_1}\, = 4{E_2}\]
\[ \Rightarrow \dfrac{{{E_1}}}{{{E_2}}} = \dfrac{4}{6} = \dfrac{2}{3}\]
\[ \Rightarrow {E_1}:{E_2} = 2:3\]
The required ratio ${E_1}:{E_2}$ is \[2:3\]
Therefore, \[1\] is the correct option.
Note: The net emf of the potentiometer is proportional to the balancing length of the potentiometer. It is given that ${E_2} > {E_1}$ thus, we must take the difference as $\left( {{E_2} - {E_1}} \right)$ . When the cell is reversed the balancing length decreases as the net emf of the cell decreases.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Electromagnetic Waves and Their Importance

Understanding Excess Pressure Inside a Liquid Drop

Understanding Elastic Collisions in Two Dimensions

A particle moves in a straight line according to the class 11 physics JEE_MAIN

Other Pages
NCERT Solutions For Class 11 Physics Chapter 4 Laws Of Motion

NCERT Solutions For Class 11 Physics Chapter 13 Oscillations - 2025-26

Motion In A Plane Class 11 Physics Chapter 3 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

