
Two bodies of mass $10\,kg$ and $5\,kg$ moving in concentric orbits of radii R and r such that their periods are the same. Then the ratio between their centripetal acceleration is
A. $\dfrac{R}{r} \\ $
B. $\dfrac{r}{R} \\ $
C. $\dfrac{{{R^2}}}{{{r^2}}} \\ $
D. $\dfrac{{{r^2}}}{{{R^2}}}$
Answer
162.3k+ views
Hint:In order to solve this question, we will use the general formula of centripetal acceleration for the circular motion and using this we will solve for the ratio of the centripetal acceleration of two bodies.
Formula used:
For a circular motion, centripetal acceleration is given by,
$a = \dfrac{{{v^2}}}{r}$
where v is velocity and r is the radius of a circular path.
Time period is given by,
$T = \dfrac{{2\pi r}}{v}$
Complete step by step solution:
According to the question, let us suppose velocities of given two masses $10kg$ and $5kg$ are ${v_1},{v_2}$ and their radius of circular path given to us R and r, given that time period are equal so,
$T = \dfrac{{2\pi R}}{{{v_1}}}$ and $T = \dfrac{{2\pi r}}{{{v_2}}}$
So, we have
$\dfrac{{2\pi R}}{{{v_1}}} = \dfrac{{2\pi r}}{{{v_2}}} \\
\Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \dfrac{R}{r} \to (i) \\ $
Now, the centripetal acceleration of both bodies are,
${a_1} = \dfrac{{{v_1}^2}}{R} \\
\Rightarrow {a_2} = \dfrac{{{v_2}^2}}{r} \\ $
On dividing both values of centripetal acceleration, we get
$\dfrac{{{a_1}}}{{{a_2}}} = {\left( {\dfrac{{{v_1}}}{{{v_2}}}} \right)^2}\dfrac{r}{R}$
Using value from equation (i) we get
$\dfrac{{{a_1}}}{{{a_2}}} = {\left( {\dfrac{R}{r}} \right)^2}\dfrac{r}{R} \\
\therefore \dfrac{{{a_1}}}{{{a_2}}} = \dfrac{R}{r} \\ $
So, the ratio of the centripetal acceleration of both the bodies is $\dfrac{R}{r}$.
Hence, the correct answer is option A.
Note: It should be remembered that, centripetal acceleration and time period of a body moving in circular motion is independent of the mass of the body as centripetal acceleration and time period depends only upon the velocity of the body and radius of the circular path. and concentric orbits are those when two bodies move in circular orbits having different radii but their centers are the same.
Formula used:
For a circular motion, centripetal acceleration is given by,
$a = \dfrac{{{v^2}}}{r}$
where v is velocity and r is the radius of a circular path.
Time period is given by,
$T = \dfrac{{2\pi r}}{v}$
Complete step by step solution:
According to the question, let us suppose velocities of given two masses $10kg$ and $5kg$ are ${v_1},{v_2}$ and their radius of circular path given to us R and r, given that time period are equal so,
$T = \dfrac{{2\pi R}}{{{v_1}}}$ and $T = \dfrac{{2\pi r}}{{{v_2}}}$
So, we have
$\dfrac{{2\pi R}}{{{v_1}}} = \dfrac{{2\pi r}}{{{v_2}}} \\
\Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \dfrac{R}{r} \to (i) \\ $
Now, the centripetal acceleration of both bodies are,
${a_1} = \dfrac{{{v_1}^2}}{R} \\
\Rightarrow {a_2} = \dfrac{{{v_2}^2}}{r} \\ $
On dividing both values of centripetal acceleration, we get
$\dfrac{{{a_1}}}{{{a_2}}} = {\left( {\dfrac{{{v_1}}}{{{v_2}}}} \right)^2}\dfrac{r}{R}$
Using value from equation (i) we get
$\dfrac{{{a_1}}}{{{a_2}}} = {\left( {\dfrac{R}{r}} \right)^2}\dfrac{r}{R} \\
\therefore \dfrac{{{a_1}}}{{{a_2}}} = \dfrac{R}{r} \\ $
So, the ratio of the centripetal acceleration of both the bodies is $\dfrac{R}{r}$.
Hence, the correct answer is option A.
Note: It should be remembered that, centripetal acceleration and time period of a body moving in circular motion is independent of the mass of the body as centripetal acceleration and time period depends only upon the velocity of the body and radius of the circular path. and concentric orbits are those when two bodies move in circular orbits having different radii but their centers are the same.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Two billiard balls of the same size and mass are in class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Class 11 JEE Main Physics Mock Test 2025

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
