
To a man walking at the rate of $3km/h$ the rain appears to fall vertically. When he increases his speed to $6km/h$ it appears to meet him at an angle of ${45^\circ}$ with the vertical. The speed of rain is:
A) $2\sqrt 2 km/h$
B) $3\sqrt 2 km/h$
C) $2\sqrt 3 km/h$
D) $3\sqrt 3 km/h$
Answer
136.2k+ views
Hint: Relative velocity is defined as the apparent velocity of an object with respect to the observer. It can be calculated by the vector difference of two velocity vectors.
Complete step by step answer:
Relative velocity is defined as the apparent velocity of an object with respect to the observer. It can be calculated as,
$\Rightarrow {{{\overrightarrow v}_{relative}}} = {{{\overrightarrow v}_{object}}} - {{{\overrightarrow v}_{observer}}} $
Let the velocity of rain be ${{{\overrightarrow v}_R}} $ and that of the man be ${{{\overrightarrow v}_M}} $. So,
$\Rightarrow {{{\overrightarrow v}_R}} = a\hat i + b\hat j$
Speed of rain, $\left| {{{{\overrightarrow v}_R}} } \right| = \sqrt {{a^2} + {b^2}} $
In case one, the rain appears to be vertical, that is the relative velocity only has a $\hat j$ component. So,
$\Rightarrow {{{\overrightarrow v}_m}} = 3\hat i$
The formula for relative velocity is given by;
$\Rightarrow {{{\overrightarrow v}_{rel}}} = {{{\overrightarrow v}_R}} - {{{\overrightarrow v}_M}} $
substituting the values;
$\Rightarrow {{{\overrightarrow v}_{rel}}} = \left( {a\hat i + b\hat j} \right) - 3\hat i$
solving further;
$\Rightarrow {{{\overrightarrow v}_{rel}}} = \left( {a - 3} \right)\hat i - b\hat j$
Since it should only have a $\hat j$ component, the $\hat i$ should be zero. So,
$\Rightarrow a - 3 = 0$
$\Rightarrow a = 3$
In the second case, the velocity of man is increased to $6km/h$ and the rain appears to form an angle of ${45^\circ}$ with the vertical. So,
$\Rightarrow {{{\overrightarrow v}_{rel}}} = {{{\overrightarrow v}_R}} - {{{\overrightarrow v}_M}} $
substitute the values in the above equation;
$\Rightarrow {{{\overrightarrow v}_{rel}}} = \left( {a\hat i + b\hat j} \right) - 6\hat i$
solving further we get;
$\Rightarrow {{{\overrightarrow v}_{rel}}} = \left( {3\hat i + b\hat j} \right) - 6\hat i$
thus, relative velocity can be given by;
$\Rightarrow {{{\overrightarrow v}_{rel}}} = - 3\hat i + b\hat j$
Since the angle it makes with the vertical is ${45^\circ}$. So,
$\Rightarrow \tan \theta = \left| {\dfrac{b}{a}} \right|$
substitute the values;
$\Rightarrow \tan {45^\circ} = \left| {\dfrac{b}{{ - 3}}} \right|$
simplifying further;
$\Rightarrow 1 = \dfrac{b}{3}$
thus,
$\Rightarrow b = 3$
Now to find the speed of the rain,
$\Rightarrow \left| {{{{\overrightarrow v}_R}} } \right| = \sqrt {{a^2} + {b^2}} $
substituting the values;
\[\Rightarrow \left| {{{{\overrightarrow v}_R}} } \right| = \sqrt {{{\left( 3 \right)}^2} + {{\left( 3 \right)}^2}} \]
simplifying further;
$\Rightarrow \left| {{{{\overrightarrow v}_R}} } \right| = \sqrt {18} $
thus, $\left| {{{{\overrightarrow v}_R}} } \right| = 3\sqrt 2 km/h$
Hence, option B is the correct answer.
Note: The horizontal and vertical components of any vectors have $\hat i$ and $\hat j$ as their unit vectors. These are called the orthogonal components of a vector. Their dot product is always zero. Relative velocity is not the real velocity of any object, it’s what it appears to be when the observer is in motion as well.
Complete step by step answer:
Relative velocity is defined as the apparent velocity of an object with respect to the observer. It can be calculated as,
$\Rightarrow {{{\overrightarrow v}_{relative}}} = {{{\overrightarrow v}_{object}}} - {{{\overrightarrow v}_{observer}}} $
Let the velocity of rain be ${{{\overrightarrow v}_R}} $ and that of the man be ${{{\overrightarrow v}_M}} $. So,
$\Rightarrow {{{\overrightarrow v}_R}} = a\hat i + b\hat j$
Speed of rain, $\left| {{{{\overrightarrow v}_R}} } \right| = \sqrt {{a^2} + {b^2}} $
In case one, the rain appears to be vertical, that is the relative velocity only has a $\hat j$ component. So,
$\Rightarrow {{{\overrightarrow v}_m}} = 3\hat i$
The formula for relative velocity is given by;
$\Rightarrow {{{\overrightarrow v}_{rel}}} = {{{\overrightarrow v}_R}} - {{{\overrightarrow v}_M}} $
substituting the values;
$\Rightarrow {{{\overrightarrow v}_{rel}}} = \left( {a\hat i + b\hat j} \right) - 3\hat i$
solving further;
$\Rightarrow {{{\overrightarrow v}_{rel}}} = \left( {a - 3} \right)\hat i - b\hat j$
Since it should only have a $\hat j$ component, the $\hat i$ should be zero. So,
$\Rightarrow a - 3 = 0$
$\Rightarrow a = 3$
In the second case, the velocity of man is increased to $6km/h$ and the rain appears to form an angle of ${45^\circ}$ with the vertical. So,
$\Rightarrow {{{\overrightarrow v}_{rel}}} = {{{\overrightarrow v}_R}} - {{{\overrightarrow v}_M}} $
substitute the values in the above equation;
$\Rightarrow {{{\overrightarrow v}_{rel}}} = \left( {a\hat i + b\hat j} \right) - 6\hat i$
solving further we get;
$\Rightarrow {{{\overrightarrow v}_{rel}}} = \left( {3\hat i + b\hat j} \right) - 6\hat i$
thus, relative velocity can be given by;
$\Rightarrow {{{\overrightarrow v}_{rel}}} = - 3\hat i + b\hat j$
Since the angle it makes with the vertical is ${45^\circ}$. So,
$\Rightarrow \tan \theta = \left| {\dfrac{b}{a}} \right|$
substitute the values;
$\Rightarrow \tan {45^\circ} = \left| {\dfrac{b}{{ - 3}}} \right|$
simplifying further;
$\Rightarrow 1 = \dfrac{b}{3}$
thus,
$\Rightarrow b = 3$
Now to find the speed of the rain,
$\Rightarrow \left| {{{{\overrightarrow v}_R}} } \right| = \sqrt {{a^2} + {b^2}} $
substituting the values;
\[\Rightarrow \left| {{{{\overrightarrow v}_R}} } \right| = \sqrt {{{\left( 3 \right)}^2} + {{\left( 3 \right)}^2}} \]
simplifying further;
$\Rightarrow \left| {{{{\overrightarrow v}_R}} } \right| = \sqrt {18} $
thus, $\left| {{{{\overrightarrow v}_R}} } \right| = 3\sqrt 2 km/h$
Hence, option B is the correct answer.
Note: The horizontal and vertical components of any vectors have $\hat i$ and $\hat j$ as their unit vectors. These are called the orthogonal components of a vector. Their dot product is always zero. Relative velocity is not the real velocity of any object, it’s what it appears to be when the observer is in motion as well.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to find Oxidation Number - Important Concepts for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

A body crosses the topmost point of a vertical circle class 11 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

At which height is gravity zero class 11 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
