
The volume of a metal sphere increases by $0.24\%$ when its temperature is raised by ${40^0}C$. What is the coefficient of linear expansion of the metal?
A) $2 \times {10^{ - 5}}{}^ \circ {C^{ - 1}}$
B) $6 \times {10^{ - 5}}{}^ \circ {C^{ - 1}}$
C) $18 \times {10^{ - 5}}{}^ \circ {C^{ - 1}}$
D) $1.2 \times {10^{ - 5}}{}^ \circ {C^{ - 1}}$
Answer
138k+ views
Hint: When a matter is subjected to heat or a temperature change, its atoms gain energy and move very fast, leading to thermal expansion. When we heat things, not only their length changes, but there is also a change in their area and volume. This gives rise to the need to define three different coefficients of thermal expansion, namely, linear, areal, and volumetric coefficients of thermal expansion.
Complete step by step solution:
For a small value of $\Delta V$:
$\Delta V \propto \Delta T$ and $\Delta V \propto V$
$\Rightarrow \Delta V \propto V\Delta T$
$\therefore \Delta V = \gamma V\Delta T$……………….. Equation (1)
where,
$\gamma =$ coefficient of volumetric expansion
$V =$ volume of body
$\Delta T =$ change in temperature
$\Delta V =$ a small change in volume [as $\Delta V \ll V$]
Now, $\Delta V = {V_T} - {V_0}$ as
${V_0} =$ the initial volume of the body and
${V_T} =$ the volume of the body after increasing temperature, i.e., at the temperature $T$
$\Rightarrow {V_T} - {V_0} = \gamma {V_0}\Delta T$
$\Rightarrow {V_T} = {V_0} + \gamma {V_0}\Delta T$
Therefore, the change in the volume of a body is given by:
$\Rightarrow {V_T} = {V_0}(1 + \gamma \Delta T)$
Here, we have $\dfrac{{\Delta V}}{V} = 0.24\% = \dfrac{{0.24}}{{100}}$ and $\Delta T = 40{}^ \circ C$
Using equation (1) and rearranging it, we get
$\Rightarrow \gamma = \dfrac{{\Delta V}}{{V\Delta T}}$
Substituting the values to find the coefficient of volumetric expansion:
$\Rightarrow \gamma = \dfrac{{0.24}}{{100}} \times \dfrac{1}{{40}}$
$\Rightarrow \gamma = 0.06 \times {10^{ - 3}}$
$\Rightarrow \gamma = 6 \times {10^{ - 5}}{}^ \circ {C^{ - 1}}$
Just like we derived the coefficient of volumetric expansion, similarly according to equation (1), linear expansion of a body is expressed as:
$\Delta L = \alpha L\Delta T$……………………….Equation (2)
where $\alpha =$ coefficient of linear expansion
Let us assume a cube of the side $L$ whose volume is ${L^3}$.
Now, $\Delta V = {(L + \Delta L)^3} - {L^3}$
Using the mathematical formula, ${(a + b)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}$
We get $\Delta V = [{L^3} - 3L{(\Delta L)^2} + 3{L^2}.\Delta L - {(\Delta L)^3}] - {L^3}$
Since, $\Delta L \ll L$,${(\Delta L)^3} \approx 0$ and ${(\Delta L)^2} \approx 0$
$\Rightarrow \Delta V = {L^3} + 3{L^2}.\Delta L - {L^3}$
$\Rightarrow \Delta V = 3{L^2}.\Delta L$
Substituting the value of $\Delta L$ from equation (2);
$\Rightarrow \Delta V = 3{L^2}(\alpha L\Delta T)$
$\Rightarrow \Delta V = 3\alpha {L^3}\Delta T$……….Equation (3)
Comparing equations (1) and (3), we get
$\Rightarrow \gamma = 3\alpha$
$\Rightarrow \alpha = \dfrac{\gamma }{3}$
$\Rightarrow \alpha = \dfrac{{6 \times {{10}^{ - 5}}{}^ \circ {C^{ - 1}}}}{3}$
$\Rightarrow \alpha = 2 \times {10^{ - 5}}{}^ \circ {C^{ - 1}}$
The correct answer is [A], $2 \times {10^{ - 5}}{}^ \circ {C^{ - 1}}$.
Note: Every material has its unique coefficient of volumetric expansion, but all three different coefficients of thermal expansion are interdependent, further indicating that these coefficients are also a characteristic property of every material (mostly metal).
Complete step by step solution:
For a small value of $\Delta V$:
$\Delta V \propto \Delta T$ and $\Delta V \propto V$
$\Rightarrow \Delta V \propto V\Delta T$
$\therefore \Delta V = \gamma V\Delta T$……………….. Equation (1)
where,
$\gamma =$ coefficient of volumetric expansion
$V =$ volume of body
$\Delta T =$ change in temperature
$\Delta V =$ a small change in volume [as $\Delta V \ll V$]
Now, $\Delta V = {V_T} - {V_0}$ as
${V_0} =$ the initial volume of the body and
${V_T} =$ the volume of the body after increasing temperature, i.e., at the temperature $T$
$\Rightarrow {V_T} - {V_0} = \gamma {V_0}\Delta T$
$\Rightarrow {V_T} = {V_0} + \gamma {V_0}\Delta T$
Therefore, the change in the volume of a body is given by:
$\Rightarrow {V_T} = {V_0}(1 + \gamma \Delta T)$
Here, we have $\dfrac{{\Delta V}}{V} = 0.24\% = \dfrac{{0.24}}{{100}}$ and $\Delta T = 40{}^ \circ C$
Using equation (1) and rearranging it, we get
$\Rightarrow \gamma = \dfrac{{\Delta V}}{{V\Delta T}}$
Substituting the values to find the coefficient of volumetric expansion:
$\Rightarrow \gamma = \dfrac{{0.24}}{{100}} \times \dfrac{1}{{40}}$
$\Rightarrow \gamma = 0.06 \times {10^{ - 3}}$
$\Rightarrow \gamma = 6 \times {10^{ - 5}}{}^ \circ {C^{ - 1}}$
Just like we derived the coefficient of volumetric expansion, similarly according to equation (1), linear expansion of a body is expressed as:
$\Delta L = \alpha L\Delta T$……………………….Equation (2)
where $\alpha =$ coefficient of linear expansion
Let us assume a cube of the side $L$ whose volume is ${L^3}$.
Now, $\Delta V = {(L + \Delta L)^3} - {L^3}$
Using the mathematical formula, ${(a + b)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}$
We get $\Delta V = [{L^3} - 3L{(\Delta L)^2} + 3{L^2}.\Delta L - {(\Delta L)^3}] - {L^3}$
Since, $\Delta L \ll L$,${(\Delta L)^3} \approx 0$ and ${(\Delta L)^2} \approx 0$
$\Rightarrow \Delta V = {L^3} + 3{L^2}.\Delta L - {L^3}$
$\Rightarrow \Delta V = 3{L^2}.\Delta L$
Substituting the value of $\Delta L$ from equation (2);
$\Rightarrow \Delta V = 3{L^2}(\alpha L\Delta T)$
$\Rightarrow \Delta V = 3\alpha {L^3}\Delta T$……….Equation (3)
Comparing equations (1) and (3), we get
$\Rightarrow \gamma = 3\alpha$
$\Rightarrow \alpha = \dfrac{\gamma }{3}$
$\Rightarrow \alpha = \dfrac{{6 \times {{10}^{ - 5}}{}^ \circ {C^{ - 1}}}}{3}$
$\Rightarrow \alpha = 2 \times {10^{ - 5}}{}^ \circ {C^{ - 1}}$
The correct answer is [A], $2 \times {10^{ - 5}}{}^ \circ {C^{ - 1}}$.
Note: Every material has its unique coefficient of volumetric expansion, but all three different coefficients of thermal expansion are interdependent, further indicating that these coefficients are also a characteristic property of every material (mostly metal).
Recently Updated Pages
COM of Semicircular Ring Important Concepts and Tips for JEE

Geostationary Satellites and Geosynchronous Satellites for JEE

Current Loop as Magnetic Dipole Important Concepts for JEE

Electromagnetic Waves Chapter for JEE Main Physics

Structure of Atom: Key Models, Subatomic Particles, and Quantum Numbers

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

A body crosses the topmost point of a vertical circle class 11 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

At which height is gravity zero class 11 physics JEE_Main

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
