
The volume of a metal sphere increases by $0.24\%$ when its temperature is raised by ${40^0}C$. What is the coefficient of linear expansion of the metal?
A) $2 \times {10^{ - 5}}{}^ \circ {C^{ - 1}}$
B) $6 \times {10^{ - 5}}{}^ \circ {C^{ - 1}}$
C) $18 \times {10^{ - 5}}{}^ \circ {C^{ - 1}}$
D) $1.2 \times {10^{ - 5}}{}^ \circ {C^{ - 1}}$
Answer
220.2k+ views
Hint: When a matter is subjected to heat or a temperature change, its atoms gain energy and move very fast, leading to thermal expansion. When we heat things, not only their length changes, but there is also a change in their area and volume. This gives rise to the need to define three different coefficients of thermal expansion, namely, linear, areal, and volumetric coefficients of thermal expansion.
Complete step by step solution:
For a small value of $\Delta V$:
$\Delta V \propto \Delta T$ and $\Delta V \propto V$
$\Rightarrow \Delta V \propto V\Delta T$
$\therefore \Delta V = \gamma V\Delta T$……………….. Equation (1)
where,
$\gamma =$ coefficient of volumetric expansion
$V =$ volume of body
$\Delta T =$ change in temperature
$\Delta V =$ a small change in volume [as $\Delta V \ll V$]
Now, $\Delta V = {V_T} - {V_0}$ as
${V_0} =$ the initial volume of the body and
${V_T} =$ the volume of the body after increasing temperature, i.e., at the temperature $T$
$\Rightarrow {V_T} - {V_0} = \gamma {V_0}\Delta T$
$\Rightarrow {V_T} = {V_0} + \gamma {V_0}\Delta T$
Therefore, the change in the volume of a body is given by:
$\Rightarrow {V_T} = {V_0}(1 + \gamma \Delta T)$
Here, we have $\dfrac{{\Delta V}}{V} = 0.24\% = \dfrac{{0.24}}{{100}}$ and $\Delta T = 40{}^ \circ C$
Using equation (1) and rearranging it, we get
$\Rightarrow \gamma = \dfrac{{\Delta V}}{{V\Delta T}}$
Substituting the values to find the coefficient of volumetric expansion:
$\Rightarrow \gamma = \dfrac{{0.24}}{{100}} \times \dfrac{1}{{40}}$
$\Rightarrow \gamma = 0.06 \times {10^{ - 3}}$
$\Rightarrow \gamma = 6 \times {10^{ - 5}}{}^ \circ {C^{ - 1}}$
Just like we derived the coefficient of volumetric expansion, similarly according to equation (1), linear expansion of a body is expressed as:
$\Delta L = \alpha L\Delta T$……………………….Equation (2)
where $\alpha =$ coefficient of linear expansion
Let us assume a cube of the side $L$ whose volume is ${L^3}$.
Now, $\Delta V = {(L + \Delta L)^3} - {L^3}$
Using the mathematical formula, ${(a + b)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}$
We get $\Delta V = [{L^3} - 3L{(\Delta L)^2} + 3{L^2}.\Delta L - {(\Delta L)^3}] - {L^3}$
Since, $\Delta L \ll L$,${(\Delta L)^3} \approx 0$ and ${(\Delta L)^2} \approx 0$
$\Rightarrow \Delta V = {L^3} + 3{L^2}.\Delta L - {L^3}$
$\Rightarrow \Delta V = 3{L^2}.\Delta L$
Substituting the value of $\Delta L$ from equation (2);
$\Rightarrow \Delta V = 3{L^2}(\alpha L\Delta T)$
$\Rightarrow \Delta V = 3\alpha {L^3}\Delta T$……….Equation (3)
Comparing equations (1) and (3), we get
$\Rightarrow \gamma = 3\alpha$
$\Rightarrow \alpha = \dfrac{\gamma }{3}$
$\Rightarrow \alpha = \dfrac{{6 \times {{10}^{ - 5}}{}^ \circ {C^{ - 1}}}}{3}$
$\Rightarrow \alpha = 2 \times {10^{ - 5}}{}^ \circ {C^{ - 1}}$
The correct answer is [A], $2 \times {10^{ - 5}}{}^ \circ {C^{ - 1}}$.
Note: Every material has its unique coefficient of volumetric expansion, but all three different coefficients of thermal expansion are interdependent, further indicating that these coefficients are also a characteristic property of every material (mostly metal).
Complete step by step solution:
For a small value of $\Delta V$:
$\Delta V \propto \Delta T$ and $\Delta V \propto V$
$\Rightarrow \Delta V \propto V\Delta T$
$\therefore \Delta V = \gamma V\Delta T$……………….. Equation (1)
where,
$\gamma =$ coefficient of volumetric expansion
$V =$ volume of body
$\Delta T =$ change in temperature
$\Delta V =$ a small change in volume [as $\Delta V \ll V$]
Now, $\Delta V = {V_T} - {V_0}$ as
${V_0} =$ the initial volume of the body and
${V_T} =$ the volume of the body after increasing temperature, i.e., at the temperature $T$
$\Rightarrow {V_T} - {V_0} = \gamma {V_0}\Delta T$
$\Rightarrow {V_T} = {V_0} + \gamma {V_0}\Delta T$
Therefore, the change in the volume of a body is given by:
$\Rightarrow {V_T} = {V_0}(1 + \gamma \Delta T)$
Here, we have $\dfrac{{\Delta V}}{V} = 0.24\% = \dfrac{{0.24}}{{100}}$ and $\Delta T = 40{}^ \circ C$
Using equation (1) and rearranging it, we get
$\Rightarrow \gamma = \dfrac{{\Delta V}}{{V\Delta T}}$
Substituting the values to find the coefficient of volumetric expansion:
$\Rightarrow \gamma = \dfrac{{0.24}}{{100}} \times \dfrac{1}{{40}}$
$\Rightarrow \gamma = 0.06 \times {10^{ - 3}}$
$\Rightarrow \gamma = 6 \times {10^{ - 5}}{}^ \circ {C^{ - 1}}$
Just like we derived the coefficient of volumetric expansion, similarly according to equation (1), linear expansion of a body is expressed as:
$\Delta L = \alpha L\Delta T$……………………….Equation (2)
where $\alpha =$ coefficient of linear expansion
Let us assume a cube of the side $L$ whose volume is ${L^3}$.
Now, $\Delta V = {(L + \Delta L)^3} - {L^3}$
Using the mathematical formula, ${(a + b)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}$
We get $\Delta V = [{L^3} - 3L{(\Delta L)^2} + 3{L^2}.\Delta L - {(\Delta L)^3}] - {L^3}$
Since, $\Delta L \ll L$,${(\Delta L)^3} \approx 0$ and ${(\Delta L)^2} \approx 0$
$\Rightarrow \Delta V = {L^3} + 3{L^2}.\Delta L - {L^3}$
$\Rightarrow \Delta V = 3{L^2}.\Delta L$
Substituting the value of $\Delta L$ from equation (2);
$\Rightarrow \Delta V = 3{L^2}(\alpha L\Delta T)$
$\Rightarrow \Delta V = 3\alpha {L^3}\Delta T$……….Equation (3)
Comparing equations (1) and (3), we get
$\Rightarrow \gamma = 3\alpha$
$\Rightarrow \alpha = \dfrac{\gamma }{3}$
$\Rightarrow \alpha = \dfrac{{6 \times {{10}^{ - 5}}{}^ \circ {C^{ - 1}}}}{3}$
$\Rightarrow \alpha = 2 \times {10^{ - 5}}{}^ \circ {C^{ - 1}}$
The correct answer is [A], $2 \times {10^{ - 5}}{}^ \circ {C^{ - 1}}$.
Note: Every material has its unique coefficient of volumetric expansion, but all three different coefficients of thermal expansion are interdependent, further indicating that these coefficients are also a characteristic property of every material (mostly metal).
Recently Updated Pages
Mass vs Weight: Key Differences Explained for Students

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

