
The Van der Waals equation of state for some gases can be expressed as: $\left( {P + \dfrac{a}{{{V^2}}}} \right)\left( {V - b} \right) = RT$, where $P$ is the pressure, $V$ is the molar volume, and $T$ is the absolute temperature of the given sample of gas and $a$, $b$ and $R$ are constants. The dimensions of $a$ are:
(A) $M{L^5}{T^{ - 2}}$
(B) $M{L^{ - 1}}{T^{ - 2}}$
(C) ${L^3}$
(D) none of the above
Answer
220.8k+ views
Hint: By considering the other terms as the constant than the $\left( {P + \dfrac{a}{{{V^2}}}} \right)$. By using this term only, the dimension of the $a$ can be determined. By keeping the $a$ in one side and the other terms in the other side, the dimension of $a$ can be determined.
Complete step by step solution
Given that,
The Van der Waals equation of state for some gases can be expressed as: $\left( {P + \dfrac{a}{{{V^2}}}} \right)\left( {V - b} \right) = RT$, where $P$ is the pressure, $V$ is the molar volume, and $T$ is the absolute temperature of the given sample of gas.
By considering the term,
$\left( {P + \dfrac{a}{{{V^2}}}} \right) = 0$
By rearranging the terms, then the above equation is written as,
$\left| P \right| = \left| {\dfrac{a}{{{V^2}}}} \right|$
By keeping the term $a$ in one side and the other terms in other side, then the above equation is written as,
$a = P \times {V^2}\,................\left( 1 \right)$
Now, the dimensional formula of each terms is,
The dimension of the pressure is given as,
$P = \dfrac{F}{A} = \dfrac{{ma}}{A}$
The unit of the above equation is written as,
$P = \dfrac{{kgm{s^{ - 2}}}}{{{m^2}}}$
By substituting the dimension in the above equation, then
$P = \dfrac{{ML{T^{ - 2}}}}{{{L^2}}}$
The dimensional formula of the volume is given by,
$V = {V^2}$
The unit of the above equation is written as,
$V = {\left( {{m^3}} \right)^2}$
Then the above equation is written as,
$V = {m^6}$
By substituting the dimension in the above equation, then
$V = {L^6}$
By substituting the dimensional formula in the equation (1), then the equation is written as,
$a = \dfrac{{ML{T^{ - 2}}}}{{{L^2}}} \times {L^6}$
By rearranging the terms, then the above equation is written as,
$a = ML{T^{ - 2}} \times {L^{ - 2}} \times {L^6}$
On further simplification of the power, then
$a = M{L^5}{T^{ - 2}}$
Hence, the option (A) is the correct answer.
Note: Here the dimension of $a$ is asked, so that the term $\left( {P + \dfrac{a}{{{V^2}}}} \right)$ is taken. If the dimension of the $b$ is asked, then this term $\left( {V - b} \right)$ is taken and the solution is done like we discussed the step by step to determine the dimension formula in the above solution.
Complete step by step solution
Given that,
The Van der Waals equation of state for some gases can be expressed as: $\left( {P + \dfrac{a}{{{V^2}}}} \right)\left( {V - b} \right) = RT$, where $P$ is the pressure, $V$ is the molar volume, and $T$ is the absolute temperature of the given sample of gas.
By considering the term,
$\left( {P + \dfrac{a}{{{V^2}}}} \right) = 0$
By rearranging the terms, then the above equation is written as,
$\left| P \right| = \left| {\dfrac{a}{{{V^2}}}} \right|$
By keeping the term $a$ in one side and the other terms in other side, then the above equation is written as,
$a = P \times {V^2}\,................\left( 1 \right)$
Now, the dimensional formula of each terms is,
The dimension of the pressure is given as,
$P = \dfrac{F}{A} = \dfrac{{ma}}{A}$
The unit of the above equation is written as,
$P = \dfrac{{kgm{s^{ - 2}}}}{{{m^2}}}$
By substituting the dimension in the above equation, then
$P = \dfrac{{ML{T^{ - 2}}}}{{{L^2}}}$
The dimensional formula of the volume is given by,
$V = {V^2}$
The unit of the above equation is written as,
$V = {\left( {{m^3}} \right)^2}$
Then the above equation is written as,
$V = {m^6}$
By substituting the dimension in the above equation, then
$V = {L^6}$
By substituting the dimensional formula in the equation (1), then the equation is written as,
$a = \dfrac{{ML{T^{ - 2}}}}{{{L^2}}} \times {L^6}$
By rearranging the terms, then the above equation is written as,
$a = ML{T^{ - 2}} \times {L^{ - 2}} \times {L^6}$
On further simplification of the power, then
$a = M{L^5}{T^{ - 2}}$
Hence, the option (A) is the correct answer.
Note: Here the dimension of $a$ is asked, so that the term $\left( {P + \dfrac{a}{{{V^2}}}} \right)$ is taken. If the dimension of the $b$ is asked, then this term $\left( {V - b} \right)$ is taken and the solution is done like we discussed the step by step to determine the dimension formula in the above solution.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

