
The value of van der Waal’s constant ‘a’ for the gases \[{{\text{O}}_{\text{2}}}\text{,}{{\text{N}}_{\text{2}}}\text{,N}{{\text{H}}_{\text{3}}}\] and \[\text{C}{{\text{H}}_{\text{4 }\!\!~\!\!\text{ }}}\] are \[\text{1}\text{.360, 1}\text{.390, 4}\text{.170 and 2}\text{.253 }\!\!~\!\!\text{ }{{\text{L}}^{\text{2}}}\text{ }\!\!~\!\!\text{ atm }\!\!~\!\!\text{ mo}{{\text{l}}^{\text{-2}}}\text{ }\!\!~\!\!\text{ }\]respectively. The gas which can most easily be liquefied is
A \[{{\text{O}}_{\text{2}}}\]
B \[{{\text{N}}_{\text{2}}}\]
C \[\text{N}{{\text{H}}_{\text{3}}}\]
D \[\text{C}{{\text{H}}_{\text{4 }\!\!~\!\!\text{ }}}\]
Answer
221.1k+ views
Hint: van der Waal’s equation is used to describe the real nature of any gas. Ideal gas is considered to be never liquified but real gas can be liquified. At low pressures, the equation is a decent approximation for real gases and is precise for an ideal gas. Also known as the ideal gas law and ideal gas equation.
Complete step-by-step answer:The ideal gas law states that PV = nRT, where n is the number of moles, P is the pressure, V is the volume, T is the temperature, and R is the constant of all gases. The Van der Waals equation of state for real gases do not adhere to the ideal gas law. The following describes how to derive the van der Waals Equation.
The volume of a real gas is calculated using the van der Waals equation as (\[{{V}_{m}}\text{ }-\text{ }b\]), where b is the volume occupied per mole.
$\begin{array}{*{35}{l}}
P({{V}_{m}}-b)=nRT \\
\end{array}$
Intermolecular attraction caused P to change as seen below.
$\begin{array}{*{35}{l}}
(P+\frac{a}{V_{m}^{2}})({{V}_{m}}-b)=RT \\
\end{array}$
$\begin{array}{*{35}{l}}
(P+\frac{a{{n}^{2}}}{{{V}^{2}}})(V-nb)=nRT \\
\end{array}$
The intermolecular attractive forces can be measured indirectly using Van der Waal's constant, "a." Strong intermolecular forces of attraction exist in ammonia. Other gases lack intermolecular hydrogen bonding.
As a result, ammonia has a higher value of van der Waal's constant "a" than other gases.
Ammonia may therefore be liquefied the most easily.
Option ‘C’ is correct
Note: The van der Waal’s equation for real gas roughly describes how real fluids behave above their critical temperatures and, at low temperatures, is qualitatively reasonable for low-pressure gaseous forms. When the value of a and b is very small so that we can neglect these correction term, then that gas behaves as an ideal gas.
Complete step-by-step answer:The ideal gas law states that PV = nRT, where n is the number of moles, P is the pressure, V is the volume, T is the temperature, and R is the constant of all gases. The Van der Waals equation of state for real gases do not adhere to the ideal gas law. The following describes how to derive the van der Waals Equation.
The volume of a real gas is calculated using the van der Waals equation as (\[{{V}_{m}}\text{ }-\text{ }b\]), where b is the volume occupied per mole.
$\begin{array}{*{35}{l}}
P({{V}_{m}}-b)=nRT \\
\end{array}$
Intermolecular attraction caused P to change as seen below.
$\begin{array}{*{35}{l}}
(P+\frac{a}{V_{m}^{2}})({{V}_{m}}-b)=RT \\
\end{array}$
$\begin{array}{*{35}{l}}
(P+\frac{a{{n}^{2}}}{{{V}^{2}}})(V-nb)=nRT \\
\end{array}$
The intermolecular attractive forces can be measured indirectly using Van der Waal's constant, "a." Strong intermolecular forces of attraction exist in ammonia. Other gases lack intermolecular hydrogen bonding.
As a result, ammonia has a higher value of van der Waal's constant "a" than other gases.
Ammonia may therefore be liquefied the most easily.
Option ‘C’ is correct
Note: The van der Waal’s equation for real gas roughly describes how real fluids behave above their critical temperatures and, at low temperatures, is qualitatively reasonable for low-pressure gaseous forms. When the value of a and b is very small so that we can neglect these correction term, then that gas behaves as an ideal gas.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Aromatization of nhexane gives A Benzene B Toluene class 11 chemistry JEE_Main

Show how you will synthesise i 1Phenylethanol from class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

Which of the following Compounds does not exhibit tautomerism class 11 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

