
The Value of expression $\left( {\dfrac{1}{{\cos {{290}^ \circ }}}} \right) + \left( {\dfrac{1}{{\sqrt 3 \sin {{250}^ \circ }}}} \right)$is
A. $\dfrac{{\sqrt 3 }}{4}$
B. $\dfrac{4}{{\sqrt 3 }}$
C. $\dfrac{2}{{\sqrt 3 }}$
D. $\dfrac{{\sqrt 3 }}{2}$
Answer
232.8k+ views
Hint: Use trigonometric sign convention identities or formulas to decrease the angle and make the expression easier to solve. Then multiply and divide two to form the expression same and trigonometric formula and apply.
Formula Used:
Trigonometric formulas –
$\cos ({270^ \circ } + \theta ) = \sin \theta $
$\sin ({270^ \circ } - \theta ) = - \cos \theta $
$\sin (A + B) = \sin A\cos B - \cos A\sin B$
$\operatorname{Sin} 2\theta = 2\sin \theta \cos \theta $
Complete step by step solution:
Given Expression,
$\left( {\dfrac{1}{{\cos {{290}^ \circ }}}} \right) + \left( {\dfrac{1}{{\sqrt 3 \sin {{250}^ \circ }}}} \right) - - - - - (1)$
Here, $\operatorname{Cos} {290^ \circ } = \cos ({270^ \circ } + {20^ \circ }) = \sin {20^ \circ }$
$\sin {250^ \circ } = \sin ({270^ \circ } - {20^ \circ }) = - \cos {20^ \circ }$
Equation (1) will be,
$ = \left( {\dfrac{1}{{\sin {{20}^ \circ }}}} \right) - \left( {\dfrac{1}{{\sqrt 3 \cos {{20}^ \circ }}}} \right)$
$ = \dfrac{{\sqrt 3 \cos {{20}^ \circ } - \sin {{20}^ \circ }}}{{\sqrt 3 \sin {{20}^ \circ }\cos {{20}^ \circ }}}$
$ = \dfrac{{2 \times \left( {\dfrac{{\sqrt 3 }}{2}\cos {{20}^ \circ } - \dfrac{1}{2}\sin {{20}^ \circ }} \right)}}{{2 \times \dfrac{{\sqrt 3 }}{2}\sin {{20}^ \circ }\cos {{20}^ \circ }}}$
Multiply and divide numerator and denominator by $2$,
$ = \dfrac{{2 \times \left( {\sin {{60}^ \circ }\cos {{20}^ \circ } - \cos {{60}^ \circ }\sin {{20}^ \circ }} \right)}}{{\dfrac{{\sqrt 3 }}{2} \times 2\sin {{20}^ \circ }\cos {{20}^ \circ }}}$
$ = \dfrac{{2 \times \left( {\sin ({{60}^ \circ } - {{20}^ \circ })} \right)}}{{\dfrac{{\sqrt 3 }}{2} \times \sin {{40}^ \circ }}}$
$ = \dfrac{{2 \times \sin {{40}^ \circ }}}{{\dfrac{{\sqrt 3 }}{2} \times \sin {{40}^ \circ }}}$
$ = \dfrac{4}{{\sqrt 3 }}$
Hence, Value of expression $\left( {\dfrac{1}{{\cos {{290}^ \circ }}}} \right) + \left( {\dfrac{1}{{\sqrt 3 \sin {{250}^ \circ }}}} \right)$is equal to $\dfrac{4}{{\sqrt 3 }}$
Option ‘B’ is correct
Note: In such question, where trigonometric expression will be given to solve. Use the formula carefully. For Example - In $\operatorname{Sin} 2\theta = 2\sin \theta \cos \theta $, here the angle is getting half while opening $\operatorname{Sin} 2\theta $ in terms of $\sin $ and $\cos $. For Trigonometric value learn to make the table and remember all the values on tip.
Formula Used:
Trigonometric formulas –
$\cos ({270^ \circ } + \theta ) = \sin \theta $
$\sin ({270^ \circ } - \theta ) = - \cos \theta $
$\sin (A + B) = \sin A\cos B - \cos A\sin B$
$\operatorname{Sin} 2\theta = 2\sin \theta \cos \theta $
Complete step by step solution:
Given Expression,
$\left( {\dfrac{1}{{\cos {{290}^ \circ }}}} \right) + \left( {\dfrac{1}{{\sqrt 3 \sin {{250}^ \circ }}}} \right) - - - - - (1)$
Here, $\operatorname{Cos} {290^ \circ } = \cos ({270^ \circ } + {20^ \circ }) = \sin {20^ \circ }$
$\sin {250^ \circ } = \sin ({270^ \circ } - {20^ \circ }) = - \cos {20^ \circ }$
Equation (1) will be,
$ = \left( {\dfrac{1}{{\sin {{20}^ \circ }}}} \right) - \left( {\dfrac{1}{{\sqrt 3 \cos {{20}^ \circ }}}} \right)$
$ = \dfrac{{\sqrt 3 \cos {{20}^ \circ } - \sin {{20}^ \circ }}}{{\sqrt 3 \sin {{20}^ \circ }\cos {{20}^ \circ }}}$
$ = \dfrac{{2 \times \left( {\dfrac{{\sqrt 3 }}{2}\cos {{20}^ \circ } - \dfrac{1}{2}\sin {{20}^ \circ }} \right)}}{{2 \times \dfrac{{\sqrt 3 }}{2}\sin {{20}^ \circ }\cos {{20}^ \circ }}}$
Multiply and divide numerator and denominator by $2$,
$ = \dfrac{{2 \times \left( {\sin {{60}^ \circ }\cos {{20}^ \circ } - \cos {{60}^ \circ }\sin {{20}^ \circ }} \right)}}{{\dfrac{{\sqrt 3 }}{2} \times 2\sin {{20}^ \circ }\cos {{20}^ \circ }}}$
$ = \dfrac{{2 \times \left( {\sin ({{60}^ \circ } - {{20}^ \circ })} \right)}}{{\dfrac{{\sqrt 3 }}{2} \times \sin {{40}^ \circ }}}$
$ = \dfrac{{2 \times \sin {{40}^ \circ }}}{{\dfrac{{\sqrt 3 }}{2} \times \sin {{40}^ \circ }}}$
$ = \dfrac{4}{{\sqrt 3 }}$
Hence, Value of expression $\left( {\dfrac{1}{{\cos {{290}^ \circ }}}} \right) + \left( {\dfrac{1}{{\sqrt 3 \sin {{250}^ \circ }}}} \right)$is equal to $\dfrac{4}{{\sqrt 3 }}$
Option ‘B’ is correct
Note: In such question, where trigonometric expression will be given to solve. Use the formula carefully. For Example - In $\operatorname{Sin} 2\theta = 2\sin \theta \cos \theta $, here the angle is getting half while opening $\operatorname{Sin} 2\theta $ in terms of $\sin $ and $\cos $. For Trigonometric value learn to make the table and remember all the values on tip.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

