
The value of ${\cos ^4}\left( {\dfrac{\pi }{8}} \right) + {\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{5\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{7\pi }}{8}} \right)$ is
A. $0$
B. $\dfrac{1}{2}$
C. $\dfrac{3}{2}$
D. $1$
Answer
233.1k+ views
Hint: In the given problem, we need to find the value of ${\cos ^4}\left( {\dfrac{\pi }{8}} \right) + {\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{5\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{7\pi }}{8}} \right)$. At first, we will try to simplify the given expression in terms of $\cos $ function. After this, we will use algebraic identity and trigonometric formulae to simplify the given expression and get our required answer.
Formula Used:
$\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta $
${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
$\sin 2x = 2\sin x\cos x$
Complete step by step solution:
We have, ${\cos ^4}\left( {\dfrac{\pi }{8}} \right) + {\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{5\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{7\pi }}{8}} \right)$
$ = {\left( {\cos \dfrac{\pi }{8}} \right)^4} + {\left( {\cos \dfrac{{3\pi }}{8}} \right)^4} + {\left( {\cos \dfrac{{5\pi }}{8}} \right)^4} + {\left( {\cos \dfrac{{7\pi }}{8}} \right)^4}$
We can write the above written expression as,
$ = {\left( {\cos \left( {\dfrac{\pi }{8}} \right)} \right)^4} + {\left( {\cos \left( {\dfrac{{3\pi }}{8}} \right)} \right)^4} + {\left( {\cos \left( {\pi - \dfrac{{3\pi }}{8}} \right)} \right)^4} + {\left( {\cos \left( {\pi - \dfrac{\pi }{8}} \right)} \right)^4}$
We know that $\cos \left( {\pi - \theta } \right) = - \cos \theta $ (Here, $\cos $ is negative because $\pi - \theta $ lies in the second quadrant, and in second quadrant $\cos $ is negative). Therefore, we get
$ = {\left( {\cos \dfrac{\pi }{8}} \right)^4} + {\left( {\cos \dfrac{{3\pi }}{8}} \right)^4} + {\left( { - \cos \dfrac{{3\pi }}{8}} \right)^4} + {\left( { - \cos \dfrac{\pi }{8}} \right)^4}$
$ = {\cos ^4}\left( {\dfrac{\pi }{8}} \right) + {\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{\pi }{8}} \right)$
On addition, we get
$ = 2{\cos ^4}\left( {\dfrac{\pi }{8}} \right) + 2{\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right)$
$ = 2\left[ {{{\cos }^4}\left( {\dfrac{\pi }{8}} \right) + {{\cos }^4}\left( {\dfrac{{3\pi }}{8}} \right)} \right]$
The above written expression can also be written as
$ = 2\left[ {{{\cos }^4}\left( {\dfrac{\pi }{8}} \right) + {{\cos }^4}\left( {\dfrac{\pi }{2} - \dfrac{\pi }{8}} \right)} \right]$
We know that $\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta $. Therefore, we get
$ = 2\left[ {{{\cos }^4}\dfrac{\pi }{8} + {{\sin }^4}\dfrac{\pi }{8}} \right]$
Now, we will add $2{\sin ^2}\dfrac{\pi }{8}{\cos ^2}\dfrac{\pi }{8}$ to ${\cos ^4}\dfrac{\pi }{8} + {\sin ^4}\dfrac{\pi }{8}$ and subtract $2{\sin ^2}\dfrac{\pi }{8}{\cos ^2}\dfrac{\pi }{8}$ from ${\cos ^4}\dfrac{\pi }{8} + {\sin ^4}\dfrac{\pi }{8}$.
$ = 2\left[ {\left( {{{\cos }^4}\dfrac{\pi }{8} + {{\sin }^4}\dfrac{\pi }{8} + 2{{\sin }^2}\dfrac{\pi }{8}{{\cos }^2}\dfrac{\pi }{8}} \right) - 2{{\sin }^2}\dfrac{\pi }{8}{{\cos }^2}\dfrac{\pi }{8}} \right]$
We know that ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$. Therefore, we get $ = 2\left[ {{{\left( {{{\cos }^2}\dfrac{\pi }{8} + {{\sin }^2}\dfrac{\pi }{8}} \right)}^2} - 2{{\sin }^2}\dfrac{\pi }{8}{{\cos }^2}\dfrac{\pi }{8}} \right]$
We know that ${\sin ^2}\theta + {\cos ^2}\theta = 1$. Therefore, we get
$ = 2\left[ {1 - 2{{\sin }^2}\dfrac{\pi }{8}{{\cos }^2}\dfrac{\pi }{8}} \right]$
Multiply and divide $2{\sin ^2}\dfrac{\pi }{8}{\cos ^2}\dfrac{\pi }{8}$ by $2$
$ = 2\left[ {1 - \dfrac{4}{2} \times {{\sin }^2}\dfrac{\pi }{8}{{\cos }^2}\dfrac{\pi }{8}} \right]$
$ = 2\left[ {1 - \dfrac{1}{2} \times {{\left( {2\sin \dfrac{\pi }{8}\cos \dfrac{\pi }{8}} \right)}^2}} \right]$
We know that $\sin 2x = 2\sin x\cos x$. Therefore, we get
$ = 2\left[ {1 - \dfrac{1}{2} \times {{\left( {\sin 2.\dfrac{\pi }{8}} \right)}^2}} \right]$
$ = 2\left[ {1 - \dfrac{1}{2} \times {{\left( {\sin \dfrac{\pi }{4}} \right)}^2}} \right]$
We know that $\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$. Therefore, we get
$ = 2\left[ {1 - \dfrac{1}{2} \times {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} \right]$
$ = 2\left[ {1 - \dfrac{1}{2} \times \dfrac{1}{2}} \right]$
On further simplification, we get
$ = 2 \times \dfrac{3}{4}$
$ = \dfrac{3}{2}$
Hence, the value of ${\cos ^4}\left( {\dfrac{\pi }{8}} \right) + {\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{5\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{7\pi }}{8}} \right)$ is $\dfrac{3}{2}$.
Option ‘C’ is correct
Note: To solve these types of questions, one must remember all the standard formulas of trigonometric functions. Most of the trigonometric functions questions are just based on substitutions, we can only solve the problem if we know the formulas and sign convention. Always try to convert the given expression in the form of an identity or formula so that you can simplify the expression easily.
Some trigonometric formulas are written below:
$\sin 2A = 2\sin A\cos A$
$\cos 2A = {\cos ^2}A - {\sin ^2}A$
$\cos 2A = 2{\cos ^2}A - 1$
$\cos 2A = 1 - 2{\sin ^2}A$
$\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$
$\sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}$
$\cos 2A = \dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}}$
We use them accordingly to the given problem
Formula Used:
$\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta $
${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
$\sin 2x = 2\sin x\cos x$
Complete step by step solution:
We have, ${\cos ^4}\left( {\dfrac{\pi }{8}} \right) + {\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{5\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{7\pi }}{8}} \right)$
$ = {\left( {\cos \dfrac{\pi }{8}} \right)^4} + {\left( {\cos \dfrac{{3\pi }}{8}} \right)^4} + {\left( {\cos \dfrac{{5\pi }}{8}} \right)^4} + {\left( {\cos \dfrac{{7\pi }}{8}} \right)^4}$
We can write the above written expression as,
$ = {\left( {\cos \left( {\dfrac{\pi }{8}} \right)} \right)^4} + {\left( {\cos \left( {\dfrac{{3\pi }}{8}} \right)} \right)^4} + {\left( {\cos \left( {\pi - \dfrac{{3\pi }}{8}} \right)} \right)^4} + {\left( {\cos \left( {\pi - \dfrac{\pi }{8}} \right)} \right)^4}$
We know that $\cos \left( {\pi - \theta } \right) = - \cos \theta $ (Here, $\cos $ is negative because $\pi - \theta $ lies in the second quadrant, and in second quadrant $\cos $ is negative). Therefore, we get
$ = {\left( {\cos \dfrac{\pi }{8}} \right)^4} + {\left( {\cos \dfrac{{3\pi }}{8}} \right)^4} + {\left( { - \cos \dfrac{{3\pi }}{8}} \right)^4} + {\left( { - \cos \dfrac{\pi }{8}} \right)^4}$
$ = {\cos ^4}\left( {\dfrac{\pi }{8}} \right) + {\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{\pi }{8}} \right)$
On addition, we get
$ = 2{\cos ^4}\left( {\dfrac{\pi }{8}} \right) + 2{\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right)$
$ = 2\left[ {{{\cos }^4}\left( {\dfrac{\pi }{8}} \right) + {{\cos }^4}\left( {\dfrac{{3\pi }}{8}} \right)} \right]$
The above written expression can also be written as
$ = 2\left[ {{{\cos }^4}\left( {\dfrac{\pi }{8}} \right) + {{\cos }^4}\left( {\dfrac{\pi }{2} - \dfrac{\pi }{8}} \right)} \right]$
We know that $\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta $. Therefore, we get
$ = 2\left[ {{{\cos }^4}\dfrac{\pi }{8} + {{\sin }^4}\dfrac{\pi }{8}} \right]$
Now, we will add $2{\sin ^2}\dfrac{\pi }{8}{\cos ^2}\dfrac{\pi }{8}$ to ${\cos ^4}\dfrac{\pi }{8} + {\sin ^4}\dfrac{\pi }{8}$ and subtract $2{\sin ^2}\dfrac{\pi }{8}{\cos ^2}\dfrac{\pi }{8}$ from ${\cos ^4}\dfrac{\pi }{8} + {\sin ^4}\dfrac{\pi }{8}$.
$ = 2\left[ {\left( {{{\cos }^4}\dfrac{\pi }{8} + {{\sin }^4}\dfrac{\pi }{8} + 2{{\sin }^2}\dfrac{\pi }{8}{{\cos }^2}\dfrac{\pi }{8}} \right) - 2{{\sin }^2}\dfrac{\pi }{8}{{\cos }^2}\dfrac{\pi }{8}} \right]$
We know that ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$. Therefore, we get $ = 2\left[ {{{\left( {{{\cos }^2}\dfrac{\pi }{8} + {{\sin }^2}\dfrac{\pi }{8}} \right)}^2} - 2{{\sin }^2}\dfrac{\pi }{8}{{\cos }^2}\dfrac{\pi }{8}} \right]$
We know that ${\sin ^2}\theta + {\cos ^2}\theta = 1$. Therefore, we get
$ = 2\left[ {1 - 2{{\sin }^2}\dfrac{\pi }{8}{{\cos }^2}\dfrac{\pi }{8}} \right]$
Multiply and divide $2{\sin ^2}\dfrac{\pi }{8}{\cos ^2}\dfrac{\pi }{8}$ by $2$
$ = 2\left[ {1 - \dfrac{4}{2} \times {{\sin }^2}\dfrac{\pi }{8}{{\cos }^2}\dfrac{\pi }{8}} \right]$
$ = 2\left[ {1 - \dfrac{1}{2} \times {{\left( {2\sin \dfrac{\pi }{8}\cos \dfrac{\pi }{8}} \right)}^2}} \right]$
We know that $\sin 2x = 2\sin x\cos x$. Therefore, we get
$ = 2\left[ {1 - \dfrac{1}{2} \times {{\left( {\sin 2.\dfrac{\pi }{8}} \right)}^2}} \right]$
$ = 2\left[ {1 - \dfrac{1}{2} \times {{\left( {\sin \dfrac{\pi }{4}} \right)}^2}} \right]$
We know that $\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$. Therefore, we get
$ = 2\left[ {1 - \dfrac{1}{2} \times {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} \right]$
$ = 2\left[ {1 - \dfrac{1}{2} \times \dfrac{1}{2}} \right]$
On further simplification, we get
$ = 2 \times \dfrac{3}{4}$
$ = \dfrac{3}{2}$
Hence, the value of ${\cos ^4}\left( {\dfrac{\pi }{8}} \right) + {\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{5\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{7\pi }}{8}} \right)$ is $\dfrac{3}{2}$.
Option ‘C’ is correct
Note: To solve these types of questions, one must remember all the standard formulas of trigonometric functions. Most of the trigonometric functions questions are just based on substitutions, we can only solve the problem if we know the formulas and sign convention. Always try to convert the given expression in the form of an identity or formula so that you can simplify the expression easily.
Some trigonometric formulas are written below:
$\sin 2A = 2\sin A\cos A$
$\cos 2A = {\cos ^2}A - {\sin ^2}A$
$\cos 2A = 2{\cos ^2}A - 1$
$\cos 2A = 1 - 2{\sin ^2}A$
$\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$
$\sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}$
$\cos 2A = \dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}}$
We use them accordingly to the given problem
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

