
The value of ${\cos ^4}\left( {\dfrac{\pi }{8}} \right) + {\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{5\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{7\pi }}{8}} \right)$ is
A. $0$
B. $\dfrac{1}{2}$
C. $\dfrac{3}{2}$
D. $1$
Answer
163.2k+ views
Hint: In the given problem, we need to find the value of ${\cos ^4}\left( {\dfrac{\pi }{8}} \right) + {\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{5\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{7\pi }}{8}} \right)$. At first, we will try to simplify the given expression in terms of $\cos $ function. After this, we will use algebraic identity and trigonometric formulae to simplify the given expression and get our required answer.
Formula Used:
$\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta $
${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
$\sin 2x = 2\sin x\cos x$
Complete step by step solution:
We have, ${\cos ^4}\left( {\dfrac{\pi }{8}} \right) + {\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{5\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{7\pi }}{8}} \right)$
$ = {\left( {\cos \dfrac{\pi }{8}} \right)^4} + {\left( {\cos \dfrac{{3\pi }}{8}} \right)^4} + {\left( {\cos \dfrac{{5\pi }}{8}} \right)^4} + {\left( {\cos \dfrac{{7\pi }}{8}} \right)^4}$
We can write the above written expression as,
$ = {\left( {\cos \left( {\dfrac{\pi }{8}} \right)} \right)^4} + {\left( {\cos \left( {\dfrac{{3\pi }}{8}} \right)} \right)^4} + {\left( {\cos \left( {\pi - \dfrac{{3\pi }}{8}} \right)} \right)^4} + {\left( {\cos \left( {\pi - \dfrac{\pi }{8}} \right)} \right)^4}$
We know that $\cos \left( {\pi - \theta } \right) = - \cos \theta $ (Here, $\cos $ is negative because $\pi - \theta $ lies in the second quadrant, and in second quadrant $\cos $ is negative). Therefore, we get
$ = {\left( {\cos \dfrac{\pi }{8}} \right)^4} + {\left( {\cos \dfrac{{3\pi }}{8}} \right)^4} + {\left( { - \cos \dfrac{{3\pi }}{8}} \right)^4} + {\left( { - \cos \dfrac{\pi }{8}} \right)^4}$
$ = {\cos ^4}\left( {\dfrac{\pi }{8}} \right) + {\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{\pi }{8}} \right)$
On addition, we get
$ = 2{\cos ^4}\left( {\dfrac{\pi }{8}} \right) + 2{\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right)$
$ = 2\left[ {{{\cos }^4}\left( {\dfrac{\pi }{8}} \right) + {{\cos }^4}\left( {\dfrac{{3\pi }}{8}} \right)} \right]$
The above written expression can also be written as
$ = 2\left[ {{{\cos }^4}\left( {\dfrac{\pi }{8}} \right) + {{\cos }^4}\left( {\dfrac{\pi }{2} - \dfrac{\pi }{8}} \right)} \right]$
We know that $\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta $. Therefore, we get
$ = 2\left[ {{{\cos }^4}\dfrac{\pi }{8} + {{\sin }^4}\dfrac{\pi }{8}} \right]$
Now, we will add $2{\sin ^2}\dfrac{\pi }{8}{\cos ^2}\dfrac{\pi }{8}$ to ${\cos ^4}\dfrac{\pi }{8} + {\sin ^4}\dfrac{\pi }{8}$ and subtract $2{\sin ^2}\dfrac{\pi }{8}{\cos ^2}\dfrac{\pi }{8}$ from ${\cos ^4}\dfrac{\pi }{8} + {\sin ^4}\dfrac{\pi }{8}$.
$ = 2\left[ {\left( {{{\cos }^4}\dfrac{\pi }{8} + {{\sin }^4}\dfrac{\pi }{8} + 2{{\sin }^2}\dfrac{\pi }{8}{{\cos }^2}\dfrac{\pi }{8}} \right) - 2{{\sin }^2}\dfrac{\pi }{8}{{\cos }^2}\dfrac{\pi }{8}} \right]$
We know that ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$. Therefore, we get $ = 2\left[ {{{\left( {{{\cos }^2}\dfrac{\pi }{8} + {{\sin }^2}\dfrac{\pi }{8}} \right)}^2} - 2{{\sin }^2}\dfrac{\pi }{8}{{\cos }^2}\dfrac{\pi }{8}} \right]$
We know that ${\sin ^2}\theta + {\cos ^2}\theta = 1$. Therefore, we get
$ = 2\left[ {1 - 2{{\sin }^2}\dfrac{\pi }{8}{{\cos }^2}\dfrac{\pi }{8}} \right]$
Multiply and divide $2{\sin ^2}\dfrac{\pi }{8}{\cos ^2}\dfrac{\pi }{8}$ by $2$
$ = 2\left[ {1 - \dfrac{4}{2} \times {{\sin }^2}\dfrac{\pi }{8}{{\cos }^2}\dfrac{\pi }{8}} \right]$
$ = 2\left[ {1 - \dfrac{1}{2} \times {{\left( {2\sin \dfrac{\pi }{8}\cos \dfrac{\pi }{8}} \right)}^2}} \right]$
We know that $\sin 2x = 2\sin x\cos x$. Therefore, we get
$ = 2\left[ {1 - \dfrac{1}{2} \times {{\left( {\sin 2.\dfrac{\pi }{8}} \right)}^2}} \right]$
$ = 2\left[ {1 - \dfrac{1}{2} \times {{\left( {\sin \dfrac{\pi }{4}} \right)}^2}} \right]$
We know that $\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$. Therefore, we get
$ = 2\left[ {1 - \dfrac{1}{2} \times {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} \right]$
$ = 2\left[ {1 - \dfrac{1}{2} \times \dfrac{1}{2}} \right]$
On further simplification, we get
$ = 2 \times \dfrac{3}{4}$
$ = \dfrac{3}{2}$
Hence, the value of ${\cos ^4}\left( {\dfrac{\pi }{8}} \right) + {\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{5\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{7\pi }}{8}} \right)$ is $\dfrac{3}{2}$.
Option ‘C’ is correct
Note: To solve these types of questions, one must remember all the standard formulas of trigonometric functions. Most of the trigonometric functions questions are just based on substitutions, we can only solve the problem if we know the formulas and sign convention. Always try to convert the given expression in the form of an identity or formula so that you can simplify the expression easily.
Some trigonometric formulas are written below:
$\sin 2A = 2\sin A\cos A$
$\cos 2A = {\cos ^2}A - {\sin ^2}A$
$\cos 2A = 2{\cos ^2}A - 1$
$\cos 2A = 1 - 2{\sin ^2}A$
$\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$
$\sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}$
$\cos 2A = \dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}}$
We use them accordingly to the given problem
Formula Used:
$\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta $
${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$
$\sin 2x = 2\sin x\cos x$
Complete step by step solution:
We have, ${\cos ^4}\left( {\dfrac{\pi }{8}} \right) + {\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{5\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{7\pi }}{8}} \right)$
$ = {\left( {\cos \dfrac{\pi }{8}} \right)^4} + {\left( {\cos \dfrac{{3\pi }}{8}} \right)^4} + {\left( {\cos \dfrac{{5\pi }}{8}} \right)^4} + {\left( {\cos \dfrac{{7\pi }}{8}} \right)^4}$
We can write the above written expression as,
$ = {\left( {\cos \left( {\dfrac{\pi }{8}} \right)} \right)^4} + {\left( {\cos \left( {\dfrac{{3\pi }}{8}} \right)} \right)^4} + {\left( {\cos \left( {\pi - \dfrac{{3\pi }}{8}} \right)} \right)^4} + {\left( {\cos \left( {\pi - \dfrac{\pi }{8}} \right)} \right)^4}$
We know that $\cos \left( {\pi - \theta } \right) = - \cos \theta $ (Here, $\cos $ is negative because $\pi - \theta $ lies in the second quadrant, and in second quadrant $\cos $ is negative). Therefore, we get
$ = {\left( {\cos \dfrac{\pi }{8}} \right)^4} + {\left( {\cos \dfrac{{3\pi }}{8}} \right)^4} + {\left( { - \cos \dfrac{{3\pi }}{8}} \right)^4} + {\left( { - \cos \dfrac{\pi }{8}} \right)^4}$
$ = {\cos ^4}\left( {\dfrac{\pi }{8}} \right) + {\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{\pi }{8}} \right)$
On addition, we get
$ = 2{\cos ^4}\left( {\dfrac{\pi }{8}} \right) + 2{\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right)$
$ = 2\left[ {{{\cos }^4}\left( {\dfrac{\pi }{8}} \right) + {{\cos }^4}\left( {\dfrac{{3\pi }}{8}} \right)} \right]$
The above written expression can also be written as
$ = 2\left[ {{{\cos }^4}\left( {\dfrac{\pi }{8}} \right) + {{\cos }^4}\left( {\dfrac{\pi }{2} - \dfrac{\pi }{8}} \right)} \right]$
We know that $\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta $. Therefore, we get
$ = 2\left[ {{{\cos }^4}\dfrac{\pi }{8} + {{\sin }^4}\dfrac{\pi }{8}} \right]$
Now, we will add $2{\sin ^2}\dfrac{\pi }{8}{\cos ^2}\dfrac{\pi }{8}$ to ${\cos ^4}\dfrac{\pi }{8} + {\sin ^4}\dfrac{\pi }{8}$ and subtract $2{\sin ^2}\dfrac{\pi }{8}{\cos ^2}\dfrac{\pi }{8}$ from ${\cos ^4}\dfrac{\pi }{8} + {\sin ^4}\dfrac{\pi }{8}$.
$ = 2\left[ {\left( {{{\cos }^4}\dfrac{\pi }{8} + {{\sin }^4}\dfrac{\pi }{8} + 2{{\sin }^2}\dfrac{\pi }{8}{{\cos }^2}\dfrac{\pi }{8}} \right) - 2{{\sin }^2}\dfrac{\pi }{8}{{\cos }^2}\dfrac{\pi }{8}} \right]$
We know that ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$. Therefore, we get $ = 2\left[ {{{\left( {{{\cos }^2}\dfrac{\pi }{8} + {{\sin }^2}\dfrac{\pi }{8}} \right)}^2} - 2{{\sin }^2}\dfrac{\pi }{8}{{\cos }^2}\dfrac{\pi }{8}} \right]$
We know that ${\sin ^2}\theta + {\cos ^2}\theta = 1$. Therefore, we get
$ = 2\left[ {1 - 2{{\sin }^2}\dfrac{\pi }{8}{{\cos }^2}\dfrac{\pi }{8}} \right]$
Multiply and divide $2{\sin ^2}\dfrac{\pi }{8}{\cos ^2}\dfrac{\pi }{8}$ by $2$
$ = 2\left[ {1 - \dfrac{4}{2} \times {{\sin }^2}\dfrac{\pi }{8}{{\cos }^2}\dfrac{\pi }{8}} \right]$
$ = 2\left[ {1 - \dfrac{1}{2} \times {{\left( {2\sin \dfrac{\pi }{8}\cos \dfrac{\pi }{8}} \right)}^2}} \right]$
We know that $\sin 2x = 2\sin x\cos x$. Therefore, we get
$ = 2\left[ {1 - \dfrac{1}{2} \times {{\left( {\sin 2.\dfrac{\pi }{8}} \right)}^2}} \right]$
$ = 2\left[ {1 - \dfrac{1}{2} \times {{\left( {\sin \dfrac{\pi }{4}} \right)}^2}} \right]$
We know that $\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$. Therefore, we get
$ = 2\left[ {1 - \dfrac{1}{2} \times {{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2}} \right]$
$ = 2\left[ {1 - \dfrac{1}{2} \times \dfrac{1}{2}} \right]$
On further simplification, we get
$ = 2 \times \dfrac{3}{4}$
$ = \dfrac{3}{2}$
Hence, the value of ${\cos ^4}\left( {\dfrac{\pi }{8}} \right) + {\cos ^4}\left( {\dfrac{{3\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{5\pi }}{8}} \right) + {\cos ^4}\left( {\dfrac{{7\pi }}{8}} \right)$ is $\dfrac{3}{2}$.
Option ‘C’ is correct
Note: To solve these types of questions, one must remember all the standard formulas of trigonometric functions. Most of the trigonometric functions questions are just based on substitutions, we can only solve the problem if we know the formulas and sign convention. Always try to convert the given expression in the form of an identity or formula so that you can simplify the expression easily.
Some trigonometric formulas are written below:
$\sin 2A = 2\sin A\cos A$
$\cos 2A = {\cos ^2}A - {\sin ^2}A$
$\cos 2A = 2{\cos ^2}A - 1$
$\cos 2A = 1 - 2{\sin ^2}A$
$\tan 2A = \dfrac{{2\tan A}}{{1 - {{\tan }^2}A}}$
$\sin 2A = \dfrac{{2\tan A}}{{1 + {{\tan }^2}A}}$
$\cos 2A = \dfrac{{1 - {{\tan }^2}A}}{{1 + {{\tan }^2}A}}$
We use them accordingly to the given problem
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
