
The V - I graph for a conductor at temperature ${T_1}$ and ${T_2}$ are as shown in the figure. The term $({T_2} - {T_1})$ is proportional to:
A) $\dfrac{{\sin 2\theta }}{{{{\sin }^2}\theta }}$
B) $\dfrac{{\cot 2\theta }}{{{{\sin }^2}\theta }}$
C) $\dfrac{{\cos 2\theta }}{{\sin 2\theta }}$
D) $\dfrac{{\tan 2\theta }}{{{{\sin }^2}\theta }}$
Answer
215.4k+ views
Hint: Recall that the slope of $V - I$ graph gives $\operatorname{R} $ . Revise the trigonometric formulae for the ease of calculations in the question. Also, we must know how the resistance varies with respect to temperature.
Complete step by step solution:
Here we are given a $V - I$ graph.
By Ohm’s law, we know that: $V \propto I$
$ \Rightarrow V = IR$
$ \Rightarrow \dfrac{V}{I} = R$
$ \Rightarrow $ The slope of $V - I$ graph gives $R$
$\therefore $ Consider $\dfrac{{{V_1}}}{{{I_1}}} = {R_1}$ resistance at temperature ${T_1}$ and $\dfrac{{{V_2}}}{{{I_2}}} = {R_2}$ resistance at temperature ${T_2}$ . self-made diagram
But, we also know that
$\tan \theta = \dfrac{{opposite}}{{adjacent}}$
$ \Rightarrow \tan \theta = \dfrac{{{V_1}}}{{{I_1}}}$
$ \Rightarrow {R_1} = \tan \theta $
And ${R_2} = \tan ({90^ \circ } - \theta )$
$ \Rightarrow {R_2} = \cot \theta $
The resistance of a conductor always depends on the temperature. As the temperature increases the resistance of the conductor also increases. For small temperatures, the resistance of the conductor increases linearly with temperature, which is given by the equation:
$R = {R_o}(1 + \alpha T)$
Where $R$ is resistance at temperature $T$ in $Ohms(\Omega )$
${R_o}$ is resistance at absolute temperature in $\Omega $
$T$ is temperature in $Kelvin(K)$
$\alpha $ is temperature coefficient of resistance
$\therefore {R_1} = {R_o}(1 + \alpha {T_1})$ and ${R_2} = {R_o}(1 + \alpha {T_2})$
Now,
${R_2} - {R_1} = {R_o}[1 + \alpha ({T_2} - {T_1})]$
But ${R_2} = \cot \theta $ and ${R_1} = \tan \theta $
Substituting these values in the above equation, we get
$\cot \theta - \tan \theta = {R_o}[1 + \alpha ({T_2} - {T_1})]$
$ \Rightarrow {T_2} - {T_1} \propto \cot \theta - \tan \theta $ $equation(1)$
Now, we need to simply the equation $\cot \theta - \tan \theta $
$\cot \theta - \tan \theta = \dfrac{{\cos \theta }}{{\sin \theta }} - \dfrac{{\sin \theta }}{{\cos \theta }}$
$ \Rightarrow \cot \theta - \tan \theta = \dfrac{{\cos \theta \times \cos \theta - \sin \theta \times \sin \theta }}{{\sin \theta \times \cos \theta }}$
$ \Rightarrow \cot \theta - \tan \theta = \dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{\sin \theta \cos \theta }}$
Now, we can substitute ${\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta $
$ \Rightarrow \cot \theta - \tan \theta = \dfrac{{\cos 2\theta }}{{\sin \theta \cos \theta }}$
Now multiplying the numerator and denominator by $2$ , we get:
$ \Rightarrow \cot \theta - \tan \theta = \dfrac{{2\cos 2\theta }}{{2\sin \theta \cos \theta }}$
We know that $2\sin \theta \cos \theta = \sin 2\theta $
$\therefore \cot \theta - \tan \theta = \dfrac{{2\cos 2\theta }}{{\sin 2\theta }}$
Substituting this value in $equation(1)$
$ \Rightarrow {T_2} - {T_1} \propto \dfrac{{2\cos 2\theta }}{{\sin 2\theta }}$
$ \Rightarrow {T_2} - {T_1} \propto \dfrac{{\cos 2\theta }}{{\sin 2\theta }}$ ($\because 2$ is an integer we can ignore it)
$\therefore $ Option $(C), \dfrac{{\cos 2\theta }}{{\sin 2\theta }}$ is the correct option.
Note: One must know that the resistance of the conductor for small temperatures increases with increase in temperature. One is very likely to forget the trigonometric formulas. Do not confuse or make mistakes in the trigonometric formulas of $\cos 2\theta,\sin 2\theta $.
Complete step by step solution:
Here we are given a $V - I$ graph.
By Ohm’s law, we know that: $V \propto I$
$ \Rightarrow V = IR$
$ \Rightarrow \dfrac{V}{I} = R$
$ \Rightarrow $ The slope of $V - I$ graph gives $R$
$\therefore $ Consider $\dfrac{{{V_1}}}{{{I_1}}} = {R_1}$ resistance at temperature ${T_1}$ and $\dfrac{{{V_2}}}{{{I_2}}} = {R_2}$ resistance at temperature ${T_2}$ . self-made diagram
But, we also know that
$\tan \theta = \dfrac{{opposite}}{{adjacent}}$
$ \Rightarrow \tan \theta = \dfrac{{{V_1}}}{{{I_1}}}$
$ \Rightarrow {R_1} = \tan \theta $
And ${R_2} = \tan ({90^ \circ } - \theta )$
$ \Rightarrow {R_2} = \cot \theta $
The resistance of a conductor always depends on the temperature. As the temperature increases the resistance of the conductor also increases. For small temperatures, the resistance of the conductor increases linearly with temperature, which is given by the equation:
$R = {R_o}(1 + \alpha T)$
Where $R$ is resistance at temperature $T$ in $Ohms(\Omega )$
${R_o}$ is resistance at absolute temperature in $\Omega $
$T$ is temperature in $Kelvin(K)$
$\alpha $ is temperature coefficient of resistance
$\therefore {R_1} = {R_o}(1 + \alpha {T_1})$ and ${R_2} = {R_o}(1 + \alpha {T_2})$
Now,
${R_2} - {R_1} = {R_o}[1 + \alpha ({T_2} - {T_1})]$
But ${R_2} = \cot \theta $ and ${R_1} = \tan \theta $
Substituting these values in the above equation, we get
$\cot \theta - \tan \theta = {R_o}[1 + \alpha ({T_2} - {T_1})]$
$ \Rightarrow {T_2} - {T_1} \propto \cot \theta - \tan \theta $ $equation(1)$
Now, we need to simply the equation $\cot \theta - \tan \theta $
$\cot \theta - \tan \theta = \dfrac{{\cos \theta }}{{\sin \theta }} - \dfrac{{\sin \theta }}{{\cos \theta }}$
$ \Rightarrow \cot \theta - \tan \theta = \dfrac{{\cos \theta \times \cos \theta - \sin \theta \times \sin \theta }}{{\sin \theta \times \cos \theta }}$
$ \Rightarrow \cot \theta - \tan \theta = \dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{\sin \theta \cos \theta }}$
Now, we can substitute ${\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta $
$ \Rightarrow \cot \theta - \tan \theta = \dfrac{{\cos 2\theta }}{{\sin \theta \cos \theta }}$
Now multiplying the numerator and denominator by $2$ , we get:
$ \Rightarrow \cot \theta - \tan \theta = \dfrac{{2\cos 2\theta }}{{2\sin \theta \cos \theta }}$
We know that $2\sin \theta \cos \theta = \sin 2\theta $
$\therefore \cot \theta - \tan \theta = \dfrac{{2\cos 2\theta }}{{\sin 2\theta }}$
Substituting this value in $equation(1)$
$ \Rightarrow {T_2} - {T_1} \propto \dfrac{{2\cos 2\theta }}{{\sin 2\theta }}$
$ \Rightarrow {T_2} - {T_1} \propto \dfrac{{\cos 2\theta }}{{\sin 2\theta }}$ ($\because 2$ is an integer we can ignore it)
$\therefore $ Option $(C), \dfrac{{\cos 2\theta }}{{\sin 2\theta }}$ is the correct option.
Note: One must know that the resistance of the conductor for small temperatures increases with increase in temperature. One is very likely to forget the trigonometric formulas. Do not confuse or make mistakes in the trigonometric formulas of $\cos 2\theta,\sin 2\theta $.
Recently Updated Pages
Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Applications of Echo in Daily Life and Science

Block and Tackle System: Definition, Types & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Average and RMS Value in Physics: Formula, Comparison & Application

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

