Answer
Verified
79.5k+ views
Hint: Recall that the slope of $V - I$ graph gives $\operatorname{R} $ . Revise the trigonometric formulae for the ease of calculations in the question. Also, we must know how the resistance varies with respect to temperature.
Complete step by step solution:
Here we are given a $V - I$ graph.
By Ohm’s law, we know that: $V \propto I$
$ \Rightarrow V = IR$
$ \Rightarrow \dfrac{V}{I} = R$
$ \Rightarrow $ The slope of $V - I$ graph gives $R$
$\therefore $ Consider $\dfrac{{{V_1}}}{{{I_1}}} = {R_1}$ resistance at temperature ${T_1}$ and $\dfrac{{{V_2}}}{{{I_2}}} = {R_2}$ resistance at temperature ${T_2}$ . self-made diagram
But, we also know that
$\tan \theta = \dfrac{{opposite}}{{adjacent}}$
$ \Rightarrow \tan \theta = \dfrac{{{V_1}}}{{{I_1}}}$
$ \Rightarrow {R_1} = \tan \theta $
And ${R_2} = \tan ({90^ \circ } - \theta )$
$ \Rightarrow {R_2} = \cot \theta $
The resistance of a conductor always depends on the temperature. As the temperature increases the resistance of the conductor also increases. For small temperatures, the resistance of the conductor increases linearly with temperature, which is given by the equation:
$R = {R_o}(1 + \alpha T)$
Where $R$ is resistance at temperature $T$ in $Ohms(\Omega )$
${R_o}$ is resistance at absolute temperature in $\Omega $
$T$ is temperature in $Kelvin(K)$
$\alpha $ is temperature coefficient of resistance
$\therefore {R_1} = {R_o}(1 + \alpha {T_1})$ and ${R_2} = {R_o}(1 + \alpha {T_2})$
Now,
${R_2} - {R_1} = {R_o}[1 + \alpha ({T_2} - {T_1})]$
But ${R_2} = \cot \theta $ and ${R_1} = \tan \theta $
Substituting these values in the above equation, we get
$\cot \theta - \tan \theta = {R_o}[1 + \alpha ({T_2} - {T_1})]$
$ \Rightarrow {T_2} - {T_1} \propto \cot \theta - \tan \theta $ $equation(1)$
Now, we need to simply the equation $\cot \theta - \tan \theta $
$\cot \theta - \tan \theta = \dfrac{{\cos \theta }}{{\sin \theta }} - \dfrac{{\sin \theta }}{{\cos \theta }}$
$ \Rightarrow \cot \theta - \tan \theta = \dfrac{{\cos \theta \times \cos \theta - \sin \theta \times \sin \theta }}{{\sin \theta \times \cos \theta }}$
$ \Rightarrow \cot \theta - \tan \theta = \dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{\sin \theta \cos \theta }}$
Now, we can substitute ${\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta $
$ \Rightarrow \cot \theta - \tan \theta = \dfrac{{\cos 2\theta }}{{\sin \theta \cos \theta }}$
Now multiplying the numerator and denominator by $2$ , we get:
$ \Rightarrow \cot \theta - \tan \theta = \dfrac{{2\cos 2\theta }}{{2\sin \theta \cos \theta }}$
We know that $2\sin \theta \cos \theta = \sin 2\theta $
$\therefore \cot \theta - \tan \theta = \dfrac{{2\cos 2\theta }}{{\sin 2\theta }}$
Substituting this value in $equation(1)$
$ \Rightarrow {T_2} - {T_1} \propto \dfrac{{2\cos 2\theta }}{{\sin 2\theta }}$
$ \Rightarrow {T_2} - {T_1} \propto \dfrac{{\cos 2\theta }}{{\sin 2\theta }}$ ($\because 2$ is an integer we can ignore it)
$\therefore $ Option $(C), \dfrac{{\cos 2\theta }}{{\sin 2\theta }}$ is the correct option.
Note: One must know that the resistance of the conductor for small temperatures increases with increase in temperature. One is very likely to forget the trigonometric formulas. Do not confuse or make mistakes in the trigonometric formulas of $\cos 2\theta,\sin 2\theta $.
Complete step by step solution:
Here we are given a $V - I$ graph.
By Ohm’s law, we know that: $V \propto I$
$ \Rightarrow V = IR$
$ \Rightarrow \dfrac{V}{I} = R$
$ \Rightarrow $ The slope of $V - I$ graph gives $R$
$\therefore $ Consider $\dfrac{{{V_1}}}{{{I_1}}} = {R_1}$ resistance at temperature ${T_1}$ and $\dfrac{{{V_2}}}{{{I_2}}} = {R_2}$ resistance at temperature ${T_2}$ . self-made diagram
But, we also know that
$\tan \theta = \dfrac{{opposite}}{{adjacent}}$
$ \Rightarrow \tan \theta = \dfrac{{{V_1}}}{{{I_1}}}$
$ \Rightarrow {R_1} = \tan \theta $
And ${R_2} = \tan ({90^ \circ } - \theta )$
$ \Rightarrow {R_2} = \cot \theta $
The resistance of a conductor always depends on the temperature. As the temperature increases the resistance of the conductor also increases. For small temperatures, the resistance of the conductor increases linearly with temperature, which is given by the equation:
$R = {R_o}(1 + \alpha T)$
Where $R$ is resistance at temperature $T$ in $Ohms(\Omega )$
${R_o}$ is resistance at absolute temperature in $\Omega $
$T$ is temperature in $Kelvin(K)$
$\alpha $ is temperature coefficient of resistance
$\therefore {R_1} = {R_o}(1 + \alpha {T_1})$ and ${R_2} = {R_o}(1 + \alpha {T_2})$
Now,
${R_2} - {R_1} = {R_o}[1 + \alpha ({T_2} - {T_1})]$
But ${R_2} = \cot \theta $ and ${R_1} = \tan \theta $
Substituting these values in the above equation, we get
$\cot \theta - \tan \theta = {R_o}[1 + \alpha ({T_2} - {T_1})]$
$ \Rightarrow {T_2} - {T_1} \propto \cot \theta - \tan \theta $ $equation(1)$
Now, we need to simply the equation $\cot \theta - \tan \theta $
$\cot \theta - \tan \theta = \dfrac{{\cos \theta }}{{\sin \theta }} - \dfrac{{\sin \theta }}{{\cos \theta }}$
$ \Rightarrow \cot \theta - \tan \theta = \dfrac{{\cos \theta \times \cos \theta - \sin \theta \times \sin \theta }}{{\sin \theta \times \cos \theta }}$
$ \Rightarrow \cot \theta - \tan \theta = \dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{\sin \theta \cos \theta }}$
Now, we can substitute ${\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta $
$ \Rightarrow \cot \theta - \tan \theta = \dfrac{{\cos 2\theta }}{{\sin \theta \cos \theta }}$
Now multiplying the numerator and denominator by $2$ , we get:
$ \Rightarrow \cot \theta - \tan \theta = \dfrac{{2\cos 2\theta }}{{2\sin \theta \cos \theta }}$
We know that $2\sin \theta \cos \theta = \sin 2\theta $
$\therefore \cot \theta - \tan \theta = \dfrac{{2\cos 2\theta }}{{\sin 2\theta }}$
Substituting this value in $equation(1)$
$ \Rightarrow {T_2} - {T_1} \propto \dfrac{{2\cos 2\theta }}{{\sin 2\theta }}$
$ \Rightarrow {T_2} - {T_1} \propto \dfrac{{\cos 2\theta }}{{\sin 2\theta }}$ ($\because 2$ is an integer we can ignore it)
$\therefore $ Option $(C), \dfrac{{\cos 2\theta }}{{\sin 2\theta }}$ is the correct option.
Note: One must know that the resistance of the conductor for small temperatures increases with increase in temperature. One is very likely to forget the trigonometric formulas. Do not confuse or make mistakes in the trigonometric formulas of $\cos 2\theta,\sin 2\theta $.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main