
The V - I graph for a conductor at temperature ${T_1}$ and ${T_2}$ are as shown in the figure. The term $({T_2} - {T_1})$ is proportional to:
A) $\dfrac{{\sin 2\theta }}{{{{\sin }^2}\theta }}$
B) $\dfrac{{\cot 2\theta }}{{{{\sin }^2}\theta }}$
C) $\dfrac{{\cos 2\theta }}{{\sin 2\theta }}$
D) $\dfrac{{\tan 2\theta }}{{{{\sin }^2}\theta }}$
Answer
232.8k+ views
Hint: Recall that the slope of $V - I$ graph gives $\operatorname{R} $ . Revise the trigonometric formulae for the ease of calculations in the question. Also, we must know how the resistance varies with respect to temperature.
Complete step by step solution:
Here we are given a $V - I$ graph.
By Ohm’s law, we know that: $V \propto I$
$ \Rightarrow V = IR$
$ \Rightarrow \dfrac{V}{I} = R$
$ \Rightarrow $ The slope of $V - I$ graph gives $R$
$\therefore $ Consider $\dfrac{{{V_1}}}{{{I_1}}} = {R_1}$ resistance at temperature ${T_1}$ and $\dfrac{{{V_2}}}{{{I_2}}} = {R_2}$ resistance at temperature ${T_2}$ . self-made diagram
But, we also know that
$\tan \theta = \dfrac{{opposite}}{{adjacent}}$
$ \Rightarrow \tan \theta = \dfrac{{{V_1}}}{{{I_1}}}$
$ \Rightarrow {R_1} = \tan \theta $
And ${R_2} = \tan ({90^ \circ } - \theta )$
$ \Rightarrow {R_2} = \cot \theta $
The resistance of a conductor always depends on the temperature. As the temperature increases the resistance of the conductor also increases. For small temperatures, the resistance of the conductor increases linearly with temperature, which is given by the equation:
$R = {R_o}(1 + \alpha T)$
Where $R$ is resistance at temperature $T$ in $Ohms(\Omega )$
${R_o}$ is resistance at absolute temperature in $\Omega $
$T$ is temperature in $Kelvin(K)$
$\alpha $ is temperature coefficient of resistance
$\therefore {R_1} = {R_o}(1 + \alpha {T_1})$ and ${R_2} = {R_o}(1 + \alpha {T_2})$
Now,
${R_2} - {R_1} = {R_o}[1 + \alpha ({T_2} - {T_1})]$
But ${R_2} = \cot \theta $ and ${R_1} = \tan \theta $
Substituting these values in the above equation, we get
$\cot \theta - \tan \theta = {R_o}[1 + \alpha ({T_2} - {T_1})]$
$ \Rightarrow {T_2} - {T_1} \propto \cot \theta - \tan \theta $ $equation(1)$
Now, we need to simply the equation $\cot \theta - \tan \theta $
$\cot \theta - \tan \theta = \dfrac{{\cos \theta }}{{\sin \theta }} - \dfrac{{\sin \theta }}{{\cos \theta }}$
$ \Rightarrow \cot \theta - \tan \theta = \dfrac{{\cos \theta \times \cos \theta - \sin \theta \times \sin \theta }}{{\sin \theta \times \cos \theta }}$
$ \Rightarrow \cot \theta - \tan \theta = \dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{\sin \theta \cos \theta }}$
Now, we can substitute ${\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta $
$ \Rightarrow \cot \theta - \tan \theta = \dfrac{{\cos 2\theta }}{{\sin \theta \cos \theta }}$
Now multiplying the numerator and denominator by $2$ , we get:
$ \Rightarrow \cot \theta - \tan \theta = \dfrac{{2\cos 2\theta }}{{2\sin \theta \cos \theta }}$
We know that $2\sin \theta \cos \theta = \sin 2\theta $
$\therefore \cot \theta - \tan \theta = \dfrac{{2\cos 2\theta }}{{\sin 2\theta }}$
Substituting this value in $equation(1)$
$ \Rightarrow {T_2} - {T_1} \propto \dfrac{{2\cos 2\theta }}{{\sin 2\theta }}$
$ \Rightarrow {T_2} - {T_1} \propto \dfrac{{\cos 2\theta }}{{\sin 2\theta }}$ ($\because 2$ is an integer we can ignore it)
$\therefore $ Option $(C), \dfrac{{\cos 2\theta }}{{\sin 2\theta }}$ is the correct option.
Note: One must know that the resistance of the conductor for small temperatures increases with increase in temperature. One is very likely to forget the trigonometric formulas. Do not confuse or make mistakes in the trigonometric formulas of $\cos 2\theta,\sin 2\theta $.
Complete step by step solution:
Here we are given a $V - I$ graph.
By Ohm’s law, we know that: $V \propto I$
$ \Rightarrow V = IR$
$ \Rightarrow \dfrac{V}{I} = R$
$ \Rightarrow $ The slope of $V - I$ graph gives $R$
$\therefore $ Consider $\dfrac{{{V_1}}}{{{I_1}}} = {R_1}$ resistance at temperature ${T_1}$ and $\dfrac{{{V_2}}}{{{I_2}}} = {R_2}$ resistance at temperature ${T_2}$ . self-made diagram
But, we also know that
$\tan \theta = \dfrac{{opposite}}{{adjacent}}$
$ \Rightarrow \tan \theta = \dfrac{{{V_1}}}{{{I_1}}}$
$ \Rightarrow {R_1} = \tan \theta $
And ${R_2} = \tan ({90^ \circ } - \theta )$
$ \Rightarrow {R_2} = \cot \theta $
The resistance of a conductor always depends on the temperature. As the temperature increases the resistance of the conductor also increases. For small temperatures, the resistance of the conductor increases linearly with temperature, which is given by the equation:
$R = {R_o}(1 + \alpha T)$
Where $R$ is resistance at temperature $T$ in $Ohms(\Omega )$
${R_o}$ is resistance at absolute temperature in $\Omega $
$T$ is temperature in $Kelvin(K)$
$\alpha $ is temperature coefficient of resistance
$\therefore {R_1} = {R_o}(1 + \alpha {T_1})$ and ${R_2} = {R_o}(1 + \alpha {T_2})$
Now,
${R_2} - {R_1} = {R_o}[1 + \alpha ({T_2} - {T_1})]$
But ${R_2} = \cot \theta $ and ${R_1} = \tan \theta $
Substituting these values in the above equation, we get
$\cot \theta - \tan \theta = {R_o}[1 + \alpha ({T_2} - {T_1})]$
$ \Rightarrow {T_2} - {T_1} \propto \cot \theta - \tan \theta $ $equation(1)$
Now, we need to simply the equation $\cot \theta - \tan \theta $
$\cot \theta - \tan \theta = \dfrac{{\cos \theta }}{{\sin \theta }} - \dfrac{{\sin \theta }}{{\cos \theta }}$
$ \Rightarrow \cot \theta - \tan \theta = \dfrac{{\cos \theta \times \cos \theta - \sin \theta \times \sin \theta }}{{\sin \theta \times \cos \theta }}$
$ \Rightarrow \cot \theta - \tan \theta = \dfrac{{{{\cos }^2}\theta - {{\sin }^2}\theta }}{{\sin \theta \cos \theta }}$
Now, we can substitute ${\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta $
$ \Rightarrow \cot \theta - \tan \theta = \dfrac{{\cos 2\theta }}{{\sin \theta \cos \theta }}$
Now multiplying the numerator and denominator by $2$ , we get:
$ \Rightarrow \cot \theta - \tan \theta = \dfrac{{2\cos 2\theta }}{{2\sin \theta \cos \theta }}$
We know that $2\sin \theta \cos \theta = \sin 2\theta $
$\therefore \cot \theta - \tan \theta = \dfrac{{2\cos 2\theta }}{{\sin 2\theta }}$
Substituting this value in $equation(1)$
$ \Rightarrow {T_2} - {T_1} \propto \dfrac{{2\cos 2\theta }}{{\sin 2\theta }}$
$ \Rightarrow {T_2} - {T_1} \propto \dfrac{{\cos 2\theta }}{{\sin 2\theta }}$ ($\because 2$ is an integer we can ignore it)
$\therefore $ Option $(C), \dfrac{{\cos 2\theta }}{{\sin 2\theta }}$ is the correct option.
Note: One must know that the resistance of the conductor for small temperatures increases with increase in temperature. One is very likely to forget the trigonometric formulas. Do not confuse or make mistakes in the trigonometric formulas of $\cos 2\theta,\sin 2\theta $.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Uniform Acceleration in Physics

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

