
The two cards are drawn at random from a pack of 52 cards. The probability of getting at least a spade and an ace, is.
$
{\text{a}}{\text{. }}\dfrac{1}{{34}} \\
{\text{b}}{\text{. }}\dfrac{8}{{221}} \\
{\text{c}}{\text{. }}\dfrac{1}{{26}} \\
{\text{d}}{\text{. }}\dfrac{2}{{51}} \\
$
Answer
232.8k+ views
Hint:Probability$\left( P \right)$$ = \dfrac{{{\text{Number of favorable outcomes}}}}{{{\text{Total number of outcomes}}}}$
Total number of cards$ = 52$
The total number of ways of choosing two cards at random$ = {}^{52}{C_2}$
Total no of spades in a deck of cards is$ = 13$
So, number of ways choosing a spade from 13 spades${}^{13}{C_1}$
And the number of aces in a deck of cards is 4, so, in a set of spades there is only one ace.
So, number of ways of choosing an ace from four aces${}^4{C_1}$
The number of ways choosing at least a spade and an ace$ = {}^{13}{C_1} \times {}^4{C_1}$
So, required probability$\left( P \right)$$ = \dfrac{{{\text{Number of favorable outcomes}}}}{{{\text{Total number of outcomes}}}}$
$ = \dfrac{{{}^{13}{C_1} \times {}^4{C_1}}}{{{}^{52}{C_2}}}$
Now, we know${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$, so, using this formula
$
P = \dfrac{{{}^{13}{C_1} \times {}^4{C_1}}}{{{}^{52}{C_2}}} = \dfrac{{\dfrac{{13!}}{{12!\left( {1!} \right)}} \times \dfrac{{4!}}{{3!\left( {1!} \right)}}}}{{\dfrac{{52!}}{{50!\left( {2!} \right)}}}} = \dfrac{{13! \times 4! \times 50! \times 2!}}{{52! \times 12! \times 3!}} = \dfrac{{13 \times 12! \times 4 \times 3! \times 50! \times 2 \times 1}}{{52 \times 51 \times 50! \times 12! \times 3!}} \\
P = \dfrac{{13 \times 4 \times 2}}{{52 \times 51}} = \dfrac{2}{{51}} \\
$
Hence option d is correct.
Note: - In such types of questions first find out the total number of outcomes, then find out the number of possible outcomes, then divide them using the formula which is stated above, we will get the required probability.
Total number of cards$ = 52$
The total number of ways of choosing two cards at random$ = {}^{52}{C_2}$
Total no of spades in a deck of cards is$ = 13$
So, number of ways choosing a spade from 13 spades${}^{13}{C_1}$
And the number of aces in a deck of cards is 4, so, in a set of spades there is only one ace.
So, number of ways of choosing an ace from four aces${}^4{C_1}$
The number of ways choosing at least a spade and an ace$ = {}^{13}{C_1} \times {}^4{C_1}$
So, required probability$\left( P \right)$$ = \dfrac{{{\text{Number of favorable outcomes}}}}{{{\text{Total number of outcomes}}}}$
$ = \dfrac{{{}^{13}{C_1} \times {}^4{C_1}}}{{{}^{52}{C_2}}}$
Now, we know${}^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$, so, using this formula
$
P = \dfrac{{{}^{13}{C_1} \times {}^4{C_1}}}{{{}^{52}{C_2}}} = \dfrac{{\dfrac{{13!}}{{12!\left( {1!} \right)}} \times \dfrac{{4!}}{{3!\left( {1!} \right)}}}}{{\dfrac{{52!}}{{50!\left( {2!} \right)}}}} = \dfrac{{13! \times 4! \times 50! \times 2!}}{{52! \times 12! \times 3!}} = \dfrac{{13 \times 12! \times 4 \times 3! \times 50! \times 2 \times 1}}{{52 \times 51 \times 50! \times 12! \times 3!}} \\
P = \dfrac{{13 \times 4 \times 2}}{{52 \times 51}} = \dfrac{2}{{51}} \\
$
Hence option d is correct.
Note: - In such types of questions first find out the total number of outcomes, then find out the number of possible outcomes, then divide them using the formula which is stated above, we will get the required probability.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

