
The trigonal bipyramidal geometry results from hybridization
(A) $ds{{p}^{3}}$ or $s{{p}^{3}}d$
(B) $ds{{p}^{2}}$ or $s{{p}^{2}}d$
(C) ${{d}^{2}}s{{p}^{3}}$ or $s{{p}^{3}}{{d}^{2}}$
(D) ${{d}^{3}}s{{p}^{2}}$ or ${{d}^{2}}s{{p}^{3}}$
Answer
219.6k+ views
Hint: Hybridization is the idea of combining the two atomic orbitals to form a new type of hybridised orbital. This mixing creates hybrid orbitals with entirely different energies and shapes. A triangular bipyramidal with one atom in the middle and five additional atoms at each of its corners is known as a trigonal bipyramidal. All five atoms are not identical. Three of these atoms are equatorial and the remaining two are axial.
Complete Step by Step Answer:
The trigonal bipyramidal geometry results from the hybridization$ds{{p}^{3}}$ or$s{{p}^{3}}d$. An example of a trigonal bipyramidal molecule is$PC{{l}_{5}}$. Its structure is as shown below:
The three equatorial $P-Cl$ bonds lie in one plane. The other two axial $P-Cl$bonds lie out of the plane, one of which lies above the plane and the other below the plane. The angle between equatorial bonds is ${{120}^{o}}$ whereas the angle between axial bonds and equatorial bonds is${{90}^{o}}$. Five $s{{p}^{3}}d$ orbitals of phosphorus and $p$ orbitals of chlorine atoms overlap in$PC{{l}_{5}}$. The $p$ orbitals are completely filled. They combine to create five $P-Cl$ sigma bonds.
Correct Option: (A) $ds{{p}^{3}}$ or $s{{p}^{3}}d$.
Note: he axial bonds are longer than the equatorial bonds. The reason for this is that axial bond pairs experience a stronger repulsive interaction than equatorial bond pairs; hence they are often a little longer. Because of this, it makes the $PC{{l}_{5}}$ molecule somewhat more reactive than the equatorial bonds.
Complete Step by Step Answer:
The trigonal bipyramidal geometry results from the hybridization$ds{{p}^{3}}$ or$s{{p}^{3}}d$. An example of a trigonal bipyramidal molecule is$PC{{l}_{5}}$. Its structure is as shown below:
The three equatorial $P-Cl$ bonds lie in one plane. The other two axial $P-Cl$bonds lie out of the plane, one of which lies above the plane and the other below the plane. The angle between equatorial bonds is ${{120}^{o}}$ whereas the angle between axial bonds and equatorial bonds is${{90}^{o}}$. Five $s{{p}^{3}}d$ orbitals of phosphorus and $p$ orbitals of chlorine atoms overlap in$PC{{l}_{5}}$. The $p$ orbitals are completely filled. They combine to create five $P-Cl$ sigma bonds.
Correct Option: (A) $ds{{p}^{3}}$ or $s{{p}^{3}}d$.
Note: he axial bonds are longer than the equatorial bonds. The reason for this is that axial bond pairs experience a stronger repulsive interaction than equatorial bond pairs; hence they are often a little longer. Because of this, it makes the $PC{{l}_{5}}$ molecule somewhat more reactive than the equatorial bonds.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Atomic Structure for Beginners

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions - 2025-26

The D and F Block Elements Class 12 Chemistry Chapter 4 CBSE Notes - 2025-26

NCERT Solutions for Class 12 Chemistry Chapter Chapter 7 Alcohol Phenol and Ether

NCERT Solutions ForClass 12 Chemistry Chapter Chapter 8 Aldehydes Ketones And Carboxylic Acids

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

