
Van’t Hoff factor, when benzoic acid is dissolved in benzene, will be:
(A)2
(B)1
(C)0.5
(D)1.5
Answer
219.3k+ views
Hint: Van’t Hoff factor of the molecules can be calculated by using the following formula,
\[\text{Van }\!\!'\!\!\text{ t Hoff factor i=}\dfrac{\text{n (Observed)}}{\text{n (Theoretical) }}\]
n (observed) = number solute particles present in the solution
n (Theoretical) = number of solute particles without considering association and dissociation.
Complete step by step answer:
>The structure of benzoic acid is as follows.

>The benzoic acid is soluble in water and benzene also.
>The molecular weight of benzoic acid is 122, but the observed molecular weight is 242.
>The observed molecular weight is double the expected molecular weight.
>This indicates that an association of benzoic acid in benzene solution into dimers.
>Therefore the Van’t Hoff factor of benzoic acid in benzene is
\[\begin{align}
& \text{Van }\!\!'\!\!\text{ t Hoff factor i=}\dfrac{\text{n (Observed)}}{\text{n (Theoretical) }} \\
& \text{ = }\dfrac{1}{2}=0.5 \\
\end{align}\]
>The Van’t Hoff factor for benzoic acid in benzene is 0.5.
So, the correct option is C.
Additional information:
>Benzoic acid is most regularly found in industries to manufacture a wide variety of products like perfumes, dyes, and as an insect repellent.
>Benzoic acid is available naturally in many plants and is involved in the biosynthesis of several secondary metabolites.
Note: Benzoic acid in the solution form dimers due to the presence of hydrogen bonding. Hydrogen bonding makes two molecules of benzoic acid into a single molecule by holding the two molecules together. The process of formation of a dimer is called dimerization. By using the Van't Hoff factor we can find the numbers of molecules present in the solution
\[\text{Van }\!\!'\!\!\text{ t Hoff factor i=}\dfrac{\text{n (Observed)}}{\text{n (Theoretical) }}\]
n (observed) = number solute particles present in the solution
n (Theoretical) = number of solute particles without considering association and dissociation.
Complete step by step answer:
>The structure of benzoic acid is as follows.

>The benzoic acid is soluble in water and benzene also.
>The molecular weight of benzoic acid is 122, but the observed molecular weight is 242.
>The observed molecular weight is double the expected molecular weight.
>This indicates that an association of benzoic acid in benzene solution into dimers.
>Therefore the Van’t Hoff factor of benzoic acid in benzene is
\[\begin{align}
& \text{Van }\!\!'\!\!\text{ t Hoff factor i=}\dfrac{\text{n (Observed)}}{\text{n (Theoretical) }} \\
& \text{ = }\dfrac{1}{2}=0.5 \\
\end{align}\]
>The Van’t Hoff factor for benzoic acid in benzene is 0.5.
So, the correct option is C.
Additional information:
>Benzoic acid is most regularly found in industries to manufacture a wide variety of products like perfumes, dyes, and as an insect repellent.
>Benzoic acid is available naturally in many plants and is involved in the biosynthesis of several secondary metabolites.
Note: Benzoic acid in the solution form dimers due to the presence of hydrogen bonding. Hydrogen bonding makes two molecules of benzoic acid into a single molecule by holding the two molecules together. The process of formation of a dimer is called dimerization. By using the Van't Hoff factor we can find the numbers of molecules present in the solution
Recently Updated Pages
Is PPh3 a strong ligand class 12 chemistry JEE_Main

Full name of DDT is A 111trichloro22bispchlorophenyl class 12 chemistry JEE_Main

Sodium acetate on heating with soda lime produce A class 12 chemistry JEE_Main

Find the isoelectric point pI of Lysine A 556 B 974 class 12 chemistry JEE_Main

The order of basicity among the following compounds class 12 chemistry JEE_Main

The number of isomers in C4H10O are a7 b8 c6 d5 class 12 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions - 2025-26

NCERT Solutions for Class 12 Chemistry Chapter Chapter 7 Alcohol Phenol and Ether

NCERT Solutions ForClass 12 Chemistry Chapter Chapter 8 Aldehydes Ketones And Carboxylic Acids

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Haloalkanes and Haloarenes Class 12 Chemistry Chapter 6 CBSE Notes - 2025-26

Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

