
Van’t Hoff factor, when benzoic acid is dissolved in benzene, will be:
(A)2
(B)1
(C)0.5
(D)1.5
Answer
140.1k+ views
Hint: Van’t Hoff factor of the molecules can be calculated by using the following formula,
n (observed) = number solute particles present in the solution
n (Theoretical) = number of solute particles without considering association and dissociation.
Complete step by step answer:
>The structure of benzoic acid is as follows.

>The benzoic acid is soluble in water and benzene also.
>The molecular weight of benzoic acid is 122, but the observed molecular weight is 242.
>The observed molecular weight is double the expected molecular weight.
>This indicates that an association of benzoic acid in benzene solution into dimers.
>Therefore the Van’t Hoff factor of benzoic acid in benzene is
>The Van’t Hoff factor for benzoic acid in benzene is 0.5.
So, the correct option is C.
Additional information:
>Benzoic acid is most regularly found in industries to manufacture a wide variety of products like perfumes, dyes, and as an insect repellent.
>Benzoic acid is available naturally in many plants and is involved in the biosynthesis of several secondary metabolites.
Note: Benzoic acid in the solution form dimers due to the presence of hydrogen bonding. Hydrogen bonding makes two molecules of benzoic acid into a single molecule by holding the two molecules together. The process of formation of a dimer is called dimerization. By using the Van't Hoff factor we can find the numbers of molecules present in the solution
n (observed) = number solute particles present in the solution
n (Theoretical) = number of solute particles without considering association and dissociation.
Complete step by step answer:
>The structure of benzoic acid is as follows.

>The benzoic acid is soluble in water and benzene also.
>The molecular weight of benzoic acid is 122, but the observed molecular weight is 242.
>The observed molecular weight is double the expected molecular weight.
>This indicates that an association of benzoic acid in benzene solution into dimers.
>Therefore the Van’t Hoff factor of benzoic acid in benzene is
>The Van’t Hoff factor for benzoic acid in benzene is 0.5.
So, the correct option is C.
Additional information:
>Benzoic acid is most regularly found in industries to manufacture a wide variety of products like perfumes, dyes, and as an insect repellent.
>Benzoic acid is available naturally in many plants and is involved in the biosynthesis of several secondary metabolites.
Note: Benzoic acid in the solution form dimers due to the presence of hydrogen bonding. Hydrogen bonding makes two molecules of benzoic acid into a single molecule by holding the two molecules together. The process of formation of a dimer is called dimerization. By using the Van't Hoff factor we can find the numbers of molecules present in the solution
Recently Updated Pages
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

JEE Main Course 2025 - Important Updates and Details

JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

NCERT Solutions for Class 12 Chemistry Chapter 7 Alcohol Phenol and Ether

NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions

Solutions Class 12 Notes: CBSE Chemistry Chapter 1

Electrochemistry Class 12 Notes: CBSE Chemistry Chapter 2
