
The temperature of the system decreases in the process of:
A) Free expansion
B) Adiabatic expansion
C) Isothermal expansion
D) Isothermal compression
Answer
217.2k+ views
Hint: In this question we are going to find the change in heat, work done, change in internal energy and change in temperature. We will use the first law of thermodynamics. Following is the mathematical expression of first law of thermodynamics-
$\Delta U = \Delta Q - \Delta W$
Complete answer:
Option (A) is free expansion, in free expansion there will be no work done, so $\Delta W = 0$ and there will be no heat transfer, so $\Delta Q = 0$.
Hence, by using the first law of thermodynamics $\Delta U = 0$.
It implies that there will be no change in temperature. So, $\Delta T = 0$
The gas equation in adiabatic process is $P{V^\gamma } = {\text{ constant}}$
In adiabatic process $\Delta Q = 0$
Using first law of thermodynamics,
$\Rightarrow \Delta U = \Delta Q - \Delta W$
Putting$\Delta Q = 0$,
$\Rightarrow \Delta U = - \Delta W$……….(i)
Change in work done is given by,
$\Rightarrow \Delta W = \int {P\Delta V} $
Since it is an expansion process so the volume will increase, so $\Delta V > 0$
So, $\Delta W > 0$
From equation (i), we can see that change in internal energy will be negative. It means the internal energy will decrease.
Relation between internal energy and temperature is given by,
$\Rightarrow \Delta U = {C_V}\Delta T$
Where,
${C_V}$ is the specific heat at constant volume
By this formula we can see that as internal energy decreases the temperature will also decrease.
Option (C) is isothermal expansion, since this is an isothermal process so there will be no change in temperature.
Option (D) is isothermal compression, since this is an isothermal process so there will be no change in temperature.
Since the temperature decreases in adiabatic expansion.
So option (B) is correct.
Note: The change in heat is zero in adiabatic process but there will always be a change in temperature. Adiabatic processes are of two types-
1. Adiabatic expansion
2. Adiabatic Compression
In adiabatic expansion the temperature decreases because the volume increases but in adiabatic compression the temperature increases because the volume decreases.
$\Delta U = \Delta Q - \Delta W$
Complete answer:
Option (A) is free expansion, in free expansion there will be no work done, so $\Delta W = 0$ and there will be no heat transfer, so $\Delta Q = 0$.
Hence, by using the first law of thermodynamics $\Delta U = 0$.
It implies that there will be no change in temperature. So, $\Delta T = 0$
The gas equation in adiabatic process is $P{V^\gamma } = {\text{ constant}}$
In adiabatic process $\Delta Q = 0$
Using first law of thermodynamics,
$\Rightarrow \Delta U = \Delta Q - \Delta W$
Putting$\Delta Q = 0$,
$\Rightarrow \Delta U = - \Delta W$……….(i)
Change in work done is given by,
$\Rightarrow \Delta W = \int {P\Delta V} $
Since it is an expansion process so the volume will increase, so $\Delta V > 0$
So, $\Delta W > 0$
From equation (i), we can see that change in internal energy will be negative. It means the internal energy will decrease.
Relation between internal energy and temperature is given by,
$\Rightarrow \Delta U = {C_V}\Delta T$
Where,
${C_V}$ is the specific heat at constant volume
By this formula we can see that as internal energy decreases the temperature will also decrease.
Option (C) is isothermal expansion, since this is an isothermal process so there will be no change in temperature.
Option (D) is isothermal compression, since this is an isothermal process so there will be no change in temperature.
Since the temperature decreases in adiabatic expansion.
So option (B) is correct.
Note: The change in heat is zero in adiabatic process but there will always be a change in temperature. Adiabatic processes are of two types-
1. Adiabatic expansion
2. Adiabatic Compression
In adiabatic expansion the temperature decreases because the volume increases but in adiabatic compression the temperature increases because the volume decreases.
Recently Updated Pages
Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Analytical Method of Vector Addition Explained Simply

Arithmetic, Geometric & Harmonic Progressions Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

