Answer
Verified
81k+ views
Hint: Find the time period of oscillation of the system. Using time period, find the relation between time period and frequency for both objects individually. Divide the squares of frequency and find out the solution.
Complete step by step solution:
The figure given consists of 2 masses attached to a given spring of spring constant k and length x. When the table is withdrawn from the second mass, the system begins to have increased oscillations of frequency \[{f_2}\] . Now we can first find the time period required for the oscillations to occur.
This is mathematically expressed as ,
\[T = 2\pi \times \sqrt {\dfrac{m}{k}} \]
Wherein T is the time period of oscillations, m is the mass of the object and K is the spring constant of the spring.
Now we know that frequency of an oscillation is inversely proportional to the time period of oscillations.
\[f = 1/T\]
\[ \Rightarrow f = 1/(2\pi \times \sqrt {\dfrac{m}{k}} )\]
\[ \Rightarrow f = \dfrac{1}{{2\pi }} \times \sqrt {\dfrac{k}{m}} \]
For Object 1,
\[ \Rightarrow {f_1} = \dfrac{1}{{2\pi }} \times \sqrt {\dfrac{k}{{{m_1}}}} \]
For Object 2,
\[ \Rightarrow {f_2} = \dfrac{1}{{2\pi }} \times \sqrt {\dfrac{k}{{{m_2} + m1}}} \]
Note: Since the table is removed, the frequency experienced by the downgoing object will also experience the mass of the first object .
Now \[\dfrac{{{f_1}^2}}{{{f_2}^2}}\] will be
\[ \Rightarrow \dfrac{{{f_1}}}{{{f_2}}} = \dfrac{{\dfrac{1}{{2\pi }} \times \sqrt {\dfrac{k}{{{m_1}}}} }}{{\dfrac{1}{{2\pi }} \times \sqrt {\dfrac{k}{{{m_2} + m1}}} }}\]
Cancelling the like terms,
\[ \Rightarrow \dfrac{{{f_1}}}{{{f_2}}} = \dfrac{{\sqrt {\dfrac{k}{{{m_1}}}} }}{{\sqrt {\dfrac{k}{{{m_2} + m1}}} }}\]
Squaring on both sides we obtain,
\[ \Rightarrow \dfrac{{{f_1}^2}}{{{f_2}^2}} = \dfrac{{\dfrac{k}{{{m_1}}}}}{{\dfrac{k}{{{m_2} + m1}}}}\]
Removing spring constant k from the above equation,
\[ \Rightarrow \dfrac{{{f_1}^2}}{{{f_2}^2}} = \dfrac{{\dfrac{1}{{{m_1}}}}}{{\dfrac{1}{{{m_2} + m1}}}}\]
\[ \Rightarrow \dfrac{{{f_1}^2}}{{{f_2}^2}} = \dfrac{{{m_2} + m1}}{{{m_1}}}\]
Therefore, Option (A) is the correct answer to the following question.
Note:
The time period is defined as a time period required by a body expressing periodic motion to complete one period or one cycle. Frequency is defined as the repetition of the event per unit time. Frequency is measured in Hertz whereas the time period is measured in seconds. Frequency is inversely proportional to time period of the oscillation.
Complete step by step solution:
The figure given consists of 2 masses attached to a given spring of spring constant k and length x. When the table is withdrawn from the second mass, the system begins to have increased oscillations of frequency \[{f_2}\] . Now we can first find the time period required for the oscillations to occur.
This is mathematically expressed as ,
\[T = 2\pi \times \sqrt {\dfrac{m}{k}} \]
Wherein T is the time period of oscillations, m is the mass of the object and K is the spring constant of the spring.
Now we know that frequency of an oscillation is inversely proportional to the time period of oscillations.
\[f = 1/T\]
\[ \Rightarrow f = 1/(2\pi \times \sqrt {\dfrac{m}{k}} )\]
\[ \Rightarrow f = \dfrac{1}{{2\pi }} \times \sqrt {\dfrac{k}{m}} \]
For Object 1,
\[ \Rightarrow {f_1} = \dfrac{1}{{2\pi }} \times \sqrt {\dfrac{k}{{{m_1}}}} \]
For Object 2,
\[ \Rightarrow {f_2} = \dfrac{1}{{2\pi }} \times \sqrt {\dfrac{k}{{{m_2} + m1}}} \]
Note: Since the table is removed, the frequency experienced by the downgoing object will also experience the mass of the first object .
Now \[\dfrac{{{f_1}^2}}{{{f_2}^2}}\] will be
\[ \Rightarrow \dfrac{{{f_1}}}{{{f_2}}} = \dfrac{{\dfrac{1}{{2\pi }} \times \sqrt {\dfrac{k}{{{m_1}}}} }}{{\dfrac{1}{{2\pi }} \times \sqrt {\dfrac{k}{{{m_2} + m1}}} }}\]
Cancelling the like terms,
\[ \Rightarrow \dfrac{{{f_1}}}{{{f_2}}} = \dfrac{{\sqrt {\dfrac{k}{{{m_1}}}} }}{{\sqrt {\dfrac{k}{{{m_2} + m1}}} }}\]
Squaring on both sides we obtain,
\[ \Rightarrow \dfrac{{{f_1}^2}}{{{f_2}^2}} = \dfrac{{\dfrac{k}{{{m_1}}}}}{{\dfrac{k}{{{m_2} + m1}}}}\]
Removing spring constant k from the above equation,
\[ \Rightarrow \dfrac{{{f_1}^2}}{{{f_2}^2}} = \dfrac{{\dfrac{1}{{{m_1}}}}}{{\dfrac{1}{{{m_2} + m1}}}}\]
\[ \Rightarrow \dfrac{{{f_1}^2}}{{{f_2}^2}} = \dfrac{{{m_2} + m1}}{{{m_1}}}\]
Therefore, Option (A) is the correct answer to the following question.
Note:
The time period is defined as a time period required by a body expressing periodic motion to complete one period or one cycle. Frequency is defined as the repetition of the event per unit time. Frequency is measured in Hertz whereas the time period is measured in seconds. Frequency is inversely proportional to time period of the oscillation.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Which of the following is not a redox reaction A CaCO3 class 11 chemistry JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
Differentiate between homogeneous and heterogeneous class 12 chemistry JEE_Main
A wave is travelling along a string At an instant the class 11 physics JEE_Main
The value of intlimits02pi max left sin xcos x right class 12 maths JEE_Main
Man A sitting in a car moving with a speed of 54 kmhr class 11 physics JEE_Main