The system when placed on a table as shown oscillates with frequency \[{f_1}\] . If the table is withdrawn, the system oscillates with a frequency \[{f_2}\] . The ratio \[\dfrac{{{f_1}^2}}{{{f_2}^2}}\] will be:
(A) \[\dfrac{{{m_1} + {m_2}}}{{{m_1}}}\]
(B) \[\dfrac{{{m_2}}}{{{m_1} + {m_2}}}\]
(C) \[\dfrac{{{m_1}}}{{{m_1} + {m_2}}}\]
(D) None
Answer
Verified
119.4k+ views
Hint: Find the time period of oscillation of the system. Using time period, find the relation between time period and frequency for both objects individually. Divide the squares of frequency and find out the solution.
Complete step by step solution:
The figure given consists of 2 masses attached to a given spring of spring constant k and length x. When the table is withdrawn from the second mass, the system begins to have increased oscillations of frequency \[{f_2}\] . Now we can first find the time period required for the oscillations to occur.
This is mathematically expressed as ,
\[T = 2\pi \times \sqrt {\dfrac{m}{k}} \]
Wherein T is the time period of oscillations, m is the mass of the object and K is the spring constant of the spring.
Now we know that frequency of an oscillation is inversely proportional to the time period of oscillations.
\[f = 1/T\]
\[ \Rightarrow f = 1/(2\pi \times \sqrt {\dfrac{m}{k}} )\]
\[ \Rightarrow f = \dfrac{1}{{2\pi }} \times \sqrt {\dfrac{k}{m}} \]
For Object 1,
\[ \Rightarrow {f_1} = \dfrac{1}{{2\pi }} \times \sqrt {\dfrac{k}{{{m_1}}}} \]
For Object 2,
\[ \Rightarrow {f_2} = \dfrac{1}{{2\pi }} \times \sqrt {\dfrac{k}{{{m_2} + m1}}} \]
Note: Since the table is removed, the frequency experienced by the downgoing object will also experience the mass of the first object .
Now \[\dfrac{{{f_1}^2}}{{{f_2}^2}}\] will be
\[ \Rightarrow \dfrac{{{f_1}}}{{{f_2}}} = \dfrac{{\dfrac{1}{{2\pi }} \times \sqrt {\dfrac{k}{{{m_1}}}} }}{{\dfrac{1}{{2\pi }} \times \sqrt {\dfrac{k}{{{m_2} + m1}}} }}\]
Cancelling the like terms,
\[ \Rightarrow \dfrac{{{f_1}}}{{{f_2}}} = \dfrac{{\sqrt {\dfrac{k}{{{m_1}}}} }}{{\sqrt {\dfrac{k}{{{m_2} + m1}}} }}\]
Squaring on both sides we obtain,
\[ \Rightarrow \dfrac{{{f_1}^2}}{{{f_2}^2}} = \dfrac{{\dfrac{k}{{{m_1}}}}}{{\dfrac{k}{{{m_2} + m1}}}}\]
Removing spring constant k from the above equation,
\[ \Rightarrow \dfrac{{{f_1}^2}}{{{f_2}^2}} = \dfrac{{\dfrac{1}{{{m_1}}}}}{{\dfrac{1}{{{m_2} + m1}}}}\]
\[ \Rightarrow \dfrac{{{f_1}^2}}{{{f_2}^2}} = \dfrac{{{m_2} + m1}}{{{m_1}}}\]
Therefore, Option (A) is the correct answer to the following question.
Note:
The time period is defined as a time period required by a body expressing periodic motion to complete one period or one cycle. Frequency is defined as the repetition of the event per unit time. Frequency is measured in Hertz whereas the time period is measured in seconds. Frequency is inversely proportional to time period of the oscillation.
Complete step by step solution:
The figure given consists of 2 masses attached to a given spring of spring constant k and length x. When the table is withdrawn from the second mass, the system begins to have increased oscillations of frequency \[{f_2}\] . Now we can first find the time period required for the oscillations to occur.
This is mathematically expressed as ,
\[T = 2\pi \times \sqrt {\dfrac{m}{k}} \]
Wherein T is the time period of oscillations, m is the mass of the object and K is the spring constant of the spring.
Now we know that frequency of an oscillation is inversely proportional to the time period of oscillations.
\[f = 1/T\]
\[ \Rightarrow f = 1/(2\pi \times \sqrt {\dfrac{m}{k}} )\]
\[ \Rightarrow f = \dfrac{1}{{2\pi }} \times \sqrt {\dfrac{k}{m}} \]
For Object 1,
\[ \Rightarrow {f_1} = \dfrac{1}{{2\pi }} \times \sqrt {\dfrac{k}{{{m_1}}}} \]
For Object 2,
\[ \Rightarrow {f_2} = \dfrac{1}{{2\pi }} \times \sqrt {\dfrac{k}{{{m_2} + m1}}} \]
Note: Since the table is removed, the frequency experienced by the downgoing object will also experience the mass of the first object .
Now \[\dfrac{{{f_1}^2}}{{{f_2}^2}}\] will be
\[ \Rightarrow \dfrac{{{f_1}}}{{{f_2}}} = \dfrac{{\dfrac{1}{{2\pi }} \times \sqrt {\dfrac{k}{{{m_1}}}} }}{{\dfrac{1}{{2\pi }} \times \sqrt {\dfrac{k}{{{m_2} + m1}}} }}\]
Cancelling the like terms,
\[ \Rightarrow \dfrac{{{f_1}}}{{{f_2}}} = \dfrac{{\sqrt {\dfrac{k}{{{m_1}}}} }}{{\sqrt {\dfrac{k}{{{m_2} + m1}}} }}\]
Squaring on both sides we obtain,
\[ \Rightarrow \dfrac{{{f_1}^2}}{{{f_2}^2}} = \dfrac{{\dfrac{k}{{{m_1}}}}}{{\dfrac{k}{{{m_2} + m1}}}}\]
Removing spring constant k from the above equation,
\[ \Rightarrow \dfrac{{{f_1}^2}}{{{f_2}^2}} = \dfrac{{\dfrac{1}{{{m_1}}}}}{{\dfrac{1}{{{m_2} + m1}}}}\]
\[ \Rightarrow \dfrac{{{f_1}^2}}{{{f_2}^2}} = \dfrac{{{m_2} + m1}}{{{m_1}}}\]
Therefore, Option (A) is the correct answer to the following question.
Note:
The time period is defined as a time period required by a body expressing periodic motion to complete one period or one cycle. Frequency is defined as the repetition of the event per unit time. Frequency is measured in Hertz whereas the time period is measured in seconds. Frequency is inversely proportional to time period of the oscillation.
Recently Updated Pages
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key
Geostationary Satellites and Geosynchronous Satellites for JEE
Complex Numbers - Important Concepts and Tips for JEE
JEE Main 2023 (February 1st Shift 2) Maths Question Paper with Answer Key
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
Inertial and Non-Inertial Frame of Reference for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs