
The system of linear equations \[3x - 2y - kz = 10,\,2x - 4y - 2z = 6\] and\[x + 2y - z = 5m\] is inconsistent if:
A. \[k = 3,m = \dfrac{4}{5}\]
B. \[k \ne 3,m \in \mathbb{R}\]
C. \[k \ne 3,m \ne \dfrac{4}{5}\]
D. \[k = 3,m \ne \dfrac{4}{5}\]
Answer
220.5k+ views
Hint: Firstly, we write the given system of equations in determinant form and using Cramer’s rule to get the condition of inconsistent. Now we use the condition of inconsistent to find the value of \[k\] and \[m\] .
Formula used:
Cramer’s Rule:
If the system of linear equations are
\[{a_1}x + {b_1}y + {c_1}z = {d_1}\] , where \[{a_1},{b_1},{c_1},{d_1}\] are constant values.
\[{a_2}x + {b_2}y + {c_2}z = {d_2}\], where \[{a_2},{b_2},{c_2},{d_2}\] are constant values.
\[{a_3}x + {b_3}y + {c_3}z = {d_3}\], where \[{a_3},{b_3},{c_3},{d_3}\] are constant values.
. Then we will get solution as
\[x = \dfrac{{{D_1}}}{D},y = \dfrac{{{D_2}}}{D},z = \dfrac{{{D_3}}}{D}\]
where \[D = \left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}} \right|,{D_1} = \left| {\begin{array}{*{20}{c}}{{d_1}}&{{b_1}}&{{c_1}}\\{{d_2}}&{{b_2}}&{{c_2}}\\{{d_3}}&{{b_3}}&{{c_3}}\end{array}} \right|,{D_2} = \left| {\begin{array}{*{20}{c}}{{a_1}}&{{d_1}}&{{c_1}}\\{{a_2}}&{{d_2}}&{{c_2}}\\{{a_3}}&{{d_3}}&{{c_3}}\end{array}} \right|,{D_3} = \left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{d_1}}\\{{a_2}}&{{b_2}}&{{d_2}}\\{{a_3}}&{{b_3}}&{{d_3}}\end{array}} \right|\]
(i) If \[D \ne 0\], then the system of equations is consistent.
(ii) If \[D = 0\] and at least one of \[{D_1},{D_2},{D_3}\] is non-zero then the given system is inconsistent.
(iii) If \[D = 0\] and \[{D_1} = {D_2} = {D_3} = 0\] then the system is consistent.
Determinant property: If a matrix given \[A = \left[ {\begin{array}{*{20}{c}}a&b&c\\d&e&f\\g&h&i\end{array}} \right]\] then
\[\left| A \right| = a\left| {\begin{array}{*{20}{c}}e&f\\h&i\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}d&f\\g&i\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}d&e\\g&h\end{array}} \right|\]
\[ \Rightarrow \left| A \right| = a\left( {ei - fh} \right) - b\left( {di - gf} \right) + c\left( {dh - eg} \right)\]
Complete step by step solution:
Given system of equations
\[3x - 2y - kz = 10\]
\[2x - 4y - 2z = 6\]
\[x + 2y - z = 5m\]
Using Cramer’s rule, we get
\[D = \left| {\begin{array}{*{20}{c}}3&{ - 2}&{ - k}\\2&{ - 4}&{ - 2}\\1&2&{ - 1}\end{array}} \right|\] , \[{D_1} = \left| {\begin{array}{*{20}{c}}{10}&{ - 2}&{ - k}\\6&{ - 4}&{ - 2}\\{5m}&2&{ - 1}\end{array}} \right|\] , \[{D_2} = \left| {\begin{array}{*{20}{c}}3&{10}&{ - k}\\2&6&{ - 2}\\1&{5m}&{ - 1}\end{array}} \right|\] and \[{D_3} = \left| {\begin{array}{*{20}{c}}3&{ - 2}&{10}\\2&{ - 4}&6\\1&2&{5m}\end{array}} \right|\]
Now finding the determinant of \[D = \left| {\begin{array}{*{20}{c}}3&{ - 2}&{ - k}\\2&{ - 4}&{ - 2}\\1&2&{ - 1}\end{array}} \right|\]
\[D = 3\left| {\begin{array}{*{20}{c}}{ - 4}&{ - 2}\\2&{ - 1}\end{array}} \right| - ( - 2)\left| {\begin{array}{*{20}{c}}2&{ - 2}\\1&{ - 1}\end{array}} \right| + \left( { - k} \right)\left| {\begin{array}{*{20}{c}}2&{ - 4}\\1&2\end{array}} \right|\]
\[ \Rightarrow D = 3\left( {( - 4)( - 1) - 2 \times \left( { - 2} \right)} \right) + 2\left( {2 \times \left( { - 1} \right) - \left( { - 1} \right) \times 2} \right) - k\left( {2 \times 2 - 1 \times \left( { - 4} \right)} \right)\]
\[ \Rightarrow D = 3\left( {4 + 4} \right) + 2\left( { - 2 + 2} \right) - k\left( {4 + 4} \right)\]
\[ \Rightarrow D = 3 \times 8 + 2 \times 0 - k \times 8\]
\[ \Rightarrow D = 24 - k \times 8\] ………………..(1)
If this system of equations are inconsistent then \[D = 0\]
Equation the equation (1) with ā\[D = 0\] and we get
\[ \Rightarrow 24 - 8k = 0\]
\[ \Rightarrow 8k = 24\]
\[ \Rightarrow k = \dfrac{{24}}{8}\]
\[ \Rightarrow k = 3\]
Substitute the value of \[k\] in \[{D_1},{D_2},{D_3}\] and we get
\[{D_1} = \left| {\begin{array}{*{20}{c}}{10}&{ - 2}&{ - 3}\\6&{ - 4}&{ - 2}\\{5m}&2&{ - 1}\end{array}} \right|\] , \[{D_2} = \left| {\begin{array}{*{20}{c}}3&{10}&{ - 3}\\2&6&{ - 2}\\1&{5m}&{ - 1}\end{array}} \right|\] and \[{D_3} = \left| {\begin{array}{*{20}{c}}3&{ - 2}&{10}\\2&{ - 4}&6\\1&2&{5m}\end{array}} \right|\]
Since the system of equations is inconsistent then \[{D_1} \ne 0,{D_2} \ne 0,{D_3} \ne 0\]
\[{D_1} = \left| {\begin{array}{*{20}{c}}{10}&{ - 2}&{ - 3}\\6&{ - 4}&{ - 2}\\{5m}&2&{ - 1}\end{array}} \right|\]
\[\left| {\begin{array}{*{20}{c}}{10}&{ - 2}&{ - 3}\\6&{ - 4}&{ - 2}\\{5m}&2&{ - 1}\end{array}} \right| = 10\left| {\begin{array}{*{20}{c}}{ - 4}&{ - 2}\\2&{ - 1}\end{array}} \right| - \left( { - 2} \right)\left| {\begin{array}{*{20}{c}}6&{ - 2}\\{5m}&{ - 1}\end{array}} \right| + \left( { - 3} \right)\left| {\begin{array}{*{20}{c}}6&{ - 4}\\{5m}&2\end{array}} \right|\]
\[ = 10\left( {\left( { - 4} \right)\left( { - 1} \right) - 2 \times \left( { - 2} \right)} \right) + 2\left( {6 \times \left( { - 1} \right) - 5m \times \left( { - 2} \right)} \right) - 3\left( {6 \times 2 - 5m \times \left( { - 4} \right)} \right)\]
\[ = 10\left( {4 + 4} \right) + 2\left( { - 6 + 10m} \right) - 3\left( {12 + 20m} \right)\]
\[ = 10 \times 8 - 12 + 20m - 36 - 60m\]
\[ = 80 - 12 - 36 - 40m\]
\[ = 32 - 40m\]
\[ = 8(4 - 5m)\]
Now \[{D_1} \ne 0\]
\[ \Rightarrow 8(4 - 5m) \ne 0\]
\[ \Rightarrow 4 - 5m \ne 0\]
\[ \Rightarrow 5m \ne 4\]
\[ \Rightarrow m \ne \dfrac{4}{5}\]
Therefore, the value of \[k = 3\] and \[m \ne \dfrac{4}{5}\] .
Hence the correct option is option D.
Note: The system of linear equations has not always a solution. There may exist unique solutions or infinitely many solutions or no solution. If the system is consistent then the system has either a unique solution or infinitely many solutions. If the system is inconsistent then the system has no solution. So, Cramer’s rule plays an important part for checking inconsistency of the system of linear equations. Cramer’s rule is not applicable if the equations have greater than three variables, applicable for only up to three variables.
Formula used:
Cramer’s Rule:
If the system of linear equations are
\[{a_1}x + {b_1}y + {c_1}z = {d_1}\] , where \[{a_1},{b_1},{c_1},{d_1}\] are constant values.
\[{a_2}x + {b_2}y + {c_2}z = {d_2}\], where \[{a_2},{b_2},{c_2},{d_2}\] are constant values.
\[{a_3}x + {b_3}y + {c_3}z = {d_3}\], where \[{a_3},{b_3},{c_3},{d_3}\] are constant values.
. Then we will get solution as
\[x = \dfrac{{{D_1}}}{D},y = \dfrac{{{D_2}}}{D},z = \dfrac{{{D_3}}}{D}\]
where \[D = \left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}} \right|,{D_1} = \left| {\begin{array}{*{20}{c}}{{d_1}}&{{b_1}}&{{c_1}}\\{{d_2}}&{{b_2}}&{{c_2}}\\{{d_3}}&{{b_3}}&{{c_3}}\end{array}} \right|,{D_2} = \left| {\begin{array}{*{20}{c}}{{a_1}}&{{d_1}}&{{c_1}}\\{{a_2}}&{{d_2}}&{{c_2}}\\{{a_3}}&{{d_3}}&{{c_3}}\end{array}} \right|,{D_3} = \left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{d_1}}\\{{a_2}}&{{b_2}}&{{d_2}}\\{{a_3}}&{{b_3}}&{{d_3}}\end{array}} \right|\]
(i) If \[D \ne 0\], then the system of equations is consistent.
(ii) If \[D = 0\] and at least one of \[{D_1},{D_2},{D_3}\] is non-zero then the given system is inconsistent.
(iii) If \[D = 0\] and \[{D_1} = {D_2} = {D_3} = 0\] then the system is consistent.
Determinant property: If a matrix given \[A = \left[ {\begin{array}{*{20}{c}}a&b&c\\d&e&f\\g&h&i\end{array}} \right]\] then
\[\left| A \right| = a\left| {\begin{array}{*{20}{c}}e&f\\h&i\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}d&f\\g&i\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}d&e\\g&h\end{array}} \right|\]
\[ \Rightarrow \left| A \right| = a\left( {ei - fh} \right) - b\left( {di - gf} \right) + c\left( {dh - eg} \right)\]
Complete step by step solution:
Given system of equations
\[3x - 2y - kz = 10\]
\[2x - 4y - 2z = 6\]
\[x + 2y - z = 5m\]
Using Cramer’s rule, we get
\[D = \left| {\begin{array}{*{20}{c}}3&{ - 2}&{ - k}\\2&{ - 4}&{ - 2}\\1&2&{ - 1}\end{array}} \right|\] , \[{D_1} = \left| {\begin{array}{*{20}{c}}{10}&{ - 2}&{ - k}\\6&{ - 4}&{ - 2}\\{5m}&2&{ - 1}\end{array}} \right|\] , \[{D_2} = \left| {\begin{array}{*{20}{c}}3&{10}&{ - k}\\2&6&{ - 2}\\1&{5m}&{ - 1}\end{array}} \right|\] and \[{D_3} = \left| {\begin{array}{*{20}{c}}3&{ - 2}&{10}\\2&{ - 4}&6\\1&2&{5m}\end{array}} \right|\]
Now finding the determinant of \[D = \left| {\begin{array}{*{20}{c}}3&{ - 2}&{ - k}\\2&{ - 4}&{ - 2}\\1&2&{ - 1}\end{array}} \right|\]
\[D = 3\left| {\begin{array}{*{20}{c}}{ - 4}&{ - 2}\\2&{ - 1}\end{array}} \right| - ( - 2)\left| {\begin{array}{*{20}{c}}2&{ - 2}\\1&{ - 1}\end{array}} \right| + \left( { - k} \right)\left| {\begin{array}{*{20}{c}}2&{ - 4}\\1&2\end{array}} \right|\]
\[ \Rightarrow D = 3\left( {( - 4)( - 1) - 2 \times \left( { - 2} \right)} \right) + 2\left( {2 \times \left( { - 1} \right) - \left( { - 1} \right) \times 2} \right) - k\left( {2 \times 2 - 1 \times \left( { - 4} \right)} \right)\]
\[ \Rightarrow D = 3\left( {4 + 4} \right) + 2\left( { - 2 + 2} \right) - k\left( {4 + 4} \right)\]
\[ \Rightarrow D = 3 \times 8 + 2 \times 0 - k \times 8\]
\[ \Rightarrow D = 24 - k \times 8\] ………………..(1)
If this system of equations are inconsistent then \[D = 0\]
Equation the equation (1) with ā\[D = 0\] and we get
\[ \Rightarrow 24 - 8k = 0\]
\[ \Rightarrow 8k = 24\]
\[ \Rightarrow k = \dfrac{{24}}{8}\]
\[ \Rightarrow k = 3\]
Substitute the value of \[k\] in \[{D_1},{D_2},{D_3}\] and we get
\[{D_1} = \left| {\begin{array}{*{20}{c}}{10}&{ - 2}&{ - 3}\\6&{ - 4}&{ - 2}\\{5m}&2&{ - 1}\end{array}} \right|\] , \[{D_2} = \left| {\begin{array}{*{20}{c}}3&{10}&{ - 3}\\2&6&{ - 2}\\1&{5m}&{ - 1}\end{array}} \right|\] and \[{D_3} = \left| {\begin{array}{*{20}{c}}3&{ - 2}&{10}\\2&{ - 4}&6\\1&2&{5m}\end{array}} \right|\]
Since the system of equations is inconsistent then \[{D_1} \ne 0,{D_2} \ne 0,{D_3} \ne 0\]
\[{D_1} = \left| {\begin{array}{*{20}{c}}{10}&{ - 2}&{ - 3}\\6&{ - 4}&{ - 2}\\{5m}&2&{ - 1}\end{array}} \right|\]
\[\left| {\begin{array}{*{20}{c}}{10}&{ - 2}&{ - 3}\\6&{ - 4}&{ - 2}\\{5m}&2&{ - 1}\end{array}} \right| = 10\left| {\begin{array}{*{20}{c}}{ - 4}&{ - 2}\\2&{ - 1}\end{array}} \right| - \left( { - 2} \right)\left| {\begin{array}{*{20}{c}}6&{ - 2}\\{5m}&{ - 1}\end{array}} \right| + \left( { - 3} \right)\left| {\begin{array}{*{20}{c}}6&{ - 4}\\{5m}&2\end{array}} \right|\]
\[ = 10\left( {\left( { - 4} \right)\left( { - 1} \right) - 2 \times \left( { - 2} \right)} \right) + 2\left( {6 \times \left( { - 1} \right) - 5m \times \left( { - 2} \right)} \right) - 3\left( {6 \times 2 - 5m \times \left( { - 4} \right)} \right)\]
\[ = 10\left( {4 + 4} \right) + 2\left( { - 6 + 10m} \right) - 3\left( {12 + 20m} \right)\]
\[ = 10 \times 8 - 12 + 20m - 36 - 60m\]
\[ = 80 - 12 - 36 - 40m\]
\[ = 32 - 40m\]
\[ = 8(4 - 5m)\]
Now \[{D_1} \ne 0\]
\[ \Rightarrow 8(4 - 5m) \ne 0\]
\[ \Rightarrow 4 - 5m \ne 0\]
\[ \Rightarrow 5m \ne 4\]
\[ \Rightarrow m \ne \dfrac{4}{5}\]
Therefore, the value of \[k = 3\] and \[m \ne \dfrac{4}{5}\] .
Hence the correct option is option D.
Note: The system of linear equations has not always a solution. There may exist unique solutions or infinitely many solutions or no solution. If the system is consistent then the system has either a unique solution or infinitely many solutions. If the system is inconsistent then the system has no solution. So, Cramer’s rule plays an important part for checking inconsistency of the system of linear equations. Cramer’s rule is not applicable if the equations have greater than three variables, applicable for only up to three variables.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Electromagnetic Waves and Their Importance

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

