
The system of linear equations \[3x - 2y - kz = 10,\,2x - 4y - 2z = 6\] and\[x + 2y - z = 5m\] is inconsistent if:
A. \[k = 3,m = \dfrac{4}{5}\]
B. \[k \ne 3,m \in \mathbb{R}\]
C. \[k \ne 3,m \ne \dfrac{4}{5}\]
D. \[k = 3,m \ne \dfrac{4}{5}\]
Answer
233.1k+ views
Hint: Firstly, we write the given system of equations in determinant form and using Cramer’s rule to get the condition of inconsistent. Now we use the condition of inconsistent to find the value of \[k\] and \[m\] .
Formula used:
Cramer’s Rule:
If the system of linear equations are
\[{a_1}x + {b_1}y + {c_1}z = {d_1}\] , where \[{a_1},{b_1},{c_1},{d_1}\] are constant values.
\[{a_2}x + {b_2}y + {c_2}z = {d_2}\], where \[{a_2},{b_2},{c_2},{d_2}\] are constant values.
\[{a_3}x + {b_3}y + {c_3}z = {d_3}\], where \[{a_3},{b_3},{c_3},{d_3}\] are constant values.
. Then we will get solution as
\[x = \dfrac{{{D_1}}}{D},y = \dfrac{{{D_2}}}{D},z = \dfrac{{{D_3}}}{D}\]
where \[D = \left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}} \right|,{D_1} = \left| {\begin{array}{*{20}{c}}{{d_1}}&{{b_1}}&{{c_1}}\\{{d_2}}&{{b_2}}&{{c_2}}\\{{d_3}}&{{b_3}}&{{c_3}}\end{array}} \right|,{D_2} = \left| {\begin{array}{*{20}{c}}{{a_1}}&{{d_1}}&{{c_1}}\\{{a_2}}&{{d_2}}&{{c_2}}\\{{a_3}}&{{d_3}}&{{c_3}}\end{array}} \right|,{D_3} = \left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{d_1}}\\{{a_2}}&{{b_2}}&{{d_2}}\\{{a_3}}&{{b_3}}&{{d_3}}\end{array}} \right|\]
(i) If \[D \ne 0\], then the system of equations is consistent.
(ii) If \[D = 0\] and at least one of \[{D_1},{D_2},{D_3}\] is non-zero then the given system is inconsistent.
(iii) If \[D = 0\] and \[{D_1} = {D_2} = {D_3} = 0\] then the system is consistent.
Determinant property: If a matrix given \[A = \left[ {\begin{array}{*{20}{c}}a&b&c\\d&e&f\\g&h&i\end{array}} \right]\] then
\[\left| A \right| = a\left| {\begin{array}{*{20}{c}}e&f\\h&i\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}d&f\\g&i\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}d&e\\g&h\end{array}} \right|\]
\[ \Rightarrow \left| A \right| = a\left( {ei - fh} \right) - b\left( {di - gf} \right) + c\left( {dh - eg} \right)\]
Complete step by step solution:
Given system of equations
\[3x - 2y - kz = 10\]
\[2x - 4y - 2z = 6\]
\[x + 2y - z = 5m\]
Using Cramer’s rule, we get
\[D = \left| {\begin{array}{*{20}{c}}3&{ - 2}&{ - k}\\2&{ - 4}&{ - 2}\\1&2&{ - 1}\end{array}} \right|\] , \[{D_1} = \left| {\begin{array}{*{20}{c}}{10}&{ - 2}&{ - k}\\6&{ - 4}&{ - 2}\\{5m}&2&{ - 1}\end{array}} \right|\] , \[{D_2} = \left| {\begin{array}{*{20}{c}}3&{10}&{ - k}\\2&6&{ - 2}\\1&{5m}&{ - 1}\end{array}} \right|\] and \[{D_3} = \left| {\begin{array}{*{20}{c}}3&{ - 2}&{10}\\2&{ - 4}&6\\1&2&{5m}\end{array}} \right|\]
Now finding the determinant of \[D = \left| {\begin{array}{*{20}{c}}3&{ - 2}&{ - k}\\2&{ - 4}&{ - 2}\\1&2&{ - 1}\end{array}} \right|\]
\[D = 3\left| {\begin{array}{*{20}{c}}{ - 4}&{ - 2}\\2&{ - 1}\end{array}} \right| - ( - 2)\left| {\begin{array}{*{20}{c}}2&{ - 2}\\1&{ - 1}\end{array}} \right| + \left( { - k} \right)\left| {\begin{array}{*{20}{c}}2&{ - 4}\\1&2\end{array}} \right|\]
\[ \Rightarrow D = 3\left( {( - 4)( - 1) - 2 \times \left( { - 2} \right)} \right) + 2\left( {2 \times \left( { - 1} \right) - \left( { - 1} \right) \times 2} \right) - k\left( {2 \times 2 - 1 \times \left( { - 4} \right)} \right)\]
\[ \Rightarrow D = 3\left( {4 + 4} \right) + 2\left( { - 2 + 2} \right) - k\left( {4 + 4} \right)\]
\[ \Rightarrow D = 3 \times 8 + 2 \times 0 - k \times 8\]
\[ \Rightarrow D = 24 - k \times 8\] ………………..(1)
If this system of equations are inconsistent then \[D = 0\]
Equation the equation (1) with ā\[D = 0\] and we get
\[ \Rightarrow 24 - 8k = 0\]
\[ \Rightarrow 8k = 24\]
\[ \Rightarrow k = \dfrac{{24}}{8}\]
\[ \Rightarrow k = 3\]
Substitute the value of \[k\] in \[{D_1},{D_2},{D_3}\] and we get
\[{D_1} = \left| {\begin{array}{*{20}{c}}{10}&{ - 2}&{ - 3}\\6&{ - 4}&{ - 2}\\{5m}&2&{ - 1}\end{array}} \right|\] , \[{D_2} = \left| {\begin{array}{*{20}{c}}3&{10}&{ - 3}\\2&6&{ - 2}\\1&{5m}&{ - 1}\end{array}} \right|\] and \[{D_3} = \left| {\begin{array}{*{20}{c}}3&{ - 2}&{10}\\2&{ - 4}&6\\1&2&{5m}\end{array}} \right|\]
Since the system of equations is inconsistent then \[{D_1} \ne 0,{D_2} \ne 0,{D_3} \ne 0\]
\[{D_1} = \left| {\begin{array}{*{20}{c}}{10}&{ - 2}&{ - 3}\\6&{ - 4}&{ - 2}\\{5m}&2&{ - 1}\end{array}} \right|\]
\[\left| {\begin{array}{*{20}{c}}{10}&{ - 2}&{ - 3}\\6&{ - 4}&{ - 2}\\{5m}&2&{ - 1}\end{array}} \right| = 10\left| {\begin{array}{*{20}{c}}{ - 4}&{ - 2}\\2&{ - 1}\end{array}} \right| - \left( { - 2} \right)\left| {\begin{array}{*{20}{c}}6&{ - 2}\\{5m}&{ - 1}\end{array}} \right| + \left( { - 3} \right)\left| {\begin{array}{*{20}{c}}6&{ - 4}\\{5m}&2\end{array}} \right|\]
\[ = 10\left( {\left( { - 4} \right)\left( { - 1} \right) - 2 \times \left( { - 2} \right)} \right) + 2\left( {6 \times \left( { - 1} \right) - 5m \times \left( { - 2} \right)} \right) - 3\left( {6 \times 2 - 5m \times \left( { - 4} \right)} \right)\]
\[ = 10\left( {4 + 4} \right) + 2\left( { - 6 + 10m} \right) - 3\left( {12 + 20m} \right)\]
\[ = 10 \times 8 - 12 + 20m - 36 - 60m\]
\[ = 80 - 12 - 36 - 40m\]
\[ = 32 - 40m\]
\[ = 8(4 - 5m)\]
Now \[{D_1} \ne 0\]
\[ \Rightarrow 8(4 - 5m) \ne 0\]
\[ \Rightarrow 4 - 5m \ne 0\]
\[ \Rightarrow 5m \ne 4\]
\[ \Rightarrow m \ne \dfrac{4}{5}\]
Therefore, the value of \[k = 3\] and \[m \ne \dfrac{4}{5}\] .
Hence the correct option is option D.
Note: The system of linear equations has not always a solution. There may exist unique solutions or infinitely many solutions or no solution. If the system is consistent then the system has either a unique solution or infinitely many solutions. If the system is inconsistent then the system has no solution. So, Cramer’s rule plays an important part for checking inconsistency of the system of linear equations. Cramer’s rule is not applicable if the equations have greater than three variables, applicable for only up to three variables.
Formula used:
Cramer’s Rule:
If the system of linear equations are
\[{a_1}x + {b_1}y + {c_1}z = {d_1}\] , where \[{a_1},{b_1},{c_1},{d_1}\] are constant values.
\[{a_2}x + {b_2}y + {c_2}z = {d_2}\], where \[{a_2},{b_2},{c_2},{d_2}\] are constant values.
\[{a_3}x + {b_3}y + {c_3}z = {d_3}\], where \[{a_3},{b_3},{c_3},{d_3}\] are constant values.
. Then we will get solution as
\[x = \dfrac{{{D_1}}}{D},y = \dfrac{{{D_2}}}{D},z = \dfrac{{{D_3}}}{D}\]
where \[D = \left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}} \right|,{D_1} = \left| {\begin{array}{*{20}{c}}{{d_1}}&{{b_1}}&{{c_1}}\\{{d_2}}&{{b_2}}&{{c_2}}\\{{d_3}}&{{b_3}}&{{c_3}}\end{array}} \right|,{D_2} = \left| {\begin{array}{*{20}{c}}{{a_1}}&{{d_1}}&{{c_1}}\\{{a_2}}&{{d_2}}&{{c_2}}\\{{a_3}}&{{d_3}}&{{c_3}}\end{array}} \right|,{D_3} = \left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{d_1}}\\{{a_2}}&{{b_2}}&{{d_2}}\\{{a_3}}&{{b_3}}&{{d_3}}\end{array}} \right|\]
(i) If \[D \ne 0\], then the system of equations is consistent.
(ii) If \[D = 0\] and at least one of \[{D_1},{D_2},{D_3}\] is non-zero then the given system is inconsistent.
(iii) If \[D = 0\] and \[{D_1} = {D_2} = {D_3} = 0\] then the system is consistent.
Determinant property: If a matrix given \[A = \left[ {\begin{array}{*{20}{c}}a&b&c\\d&e&f\\g&h&i\end{array}} \right]\] then
\[\left| A \right| = a\left| {\begin{array}{*{20}{c}}e&f\\h&i\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}d&f\\g&i\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}d&e\\g&h\end{array}} \right|\]
\[ \Rightarrow \left| A \right| = a\left( {ei - fh} \right) - b\left( {di - gf} \right) + c\left( {dh - eg} \right)\]
Complete step by step solution:
Given system of equations
\[3x - 2y - kz = 10\]
\[2x - 4y - 2z = 6\]
\[x + 2y - z = 5m\]
Using Cramer’s rule, we get
\[D = \left| {\begin{array}{*{20}{c}}3&{ - 2}&{ - k}\\2&{ - 4}&{ - 2}\\1&2&{ - 1}\end{array}} \right|\] , \[{D_1} = \left| {\begin{array}{*{20}{c}}{10}&{ - 2}&{ - k}\\6&{ - 4}&{ - 2}\\{5m}&2&{ - 1}\end{array}} \right|\] , \[{D_2} = \left| {\begin{array}{*{20}{c}}3&{10}&{ - k}\\2&6&{ - 2}\\1&{5m}&{ - 1}\end{array}} \right|\] and \[{D_3} = \left| {\begin{array}{*{20}{c}}3&{ - 2}&{10}\\2&{ - 4}&6\\1&2&{5m}\end{array}} \right|\]
Now finding the determinant of \[D = \left| {\begin{array}{*{20}{c}}3&{ - 2}&{ - k}\\2&{ - 4}&{ - 2}\\1&2&{ - 1}\end{array}} \right|\]
\[D = 3\left| {\begin{array}{*{20}{c}}{ - 4}&{ - 2}\\2&{ - 1}\end{array}} \right| - ( - 2)\left| {\begin{array}{*{20}{c}}2&{ - 2}\\1&{ - 1}\end{array}} \right| + \left( { - k} \right)\left| {\begin{array}{*{20}{c}}2&{ - 4}\\1&2\end{array}} \right|\]
\[ \Rightarrow D = 3\left( {( - 4)( - 1) - 2 \times \left( { - 2} \right)} \right) + 2\left( {2 \times \left( { - 1} \right) - \left( { - 1} \right) \times 2} \right) - k\left( {2 \times 2 - 1 \times \left( { - 4} \right)} \right)\]
\[ \Rightarrow D = 3\left( {4 + 4} \right) + 2\left( { - 2 + 2} \right) - k\left( {4 + 4} \right)\]
\[ \Rightarrow D = 3 \times 8 + 2 \times 0 - k \times 8\]
\[ \Rightarrow D = 24 - k \times 8\] ………………..(1)
If this system of equations are inconsistent then \[D = 0\]
Equation the equation (1) with ā\[D = 0\] and we get
\[ \Rightarrow 24 - 8k = 0\]
\[ \Rightarrow 8k = 24\]
\[ \Rightarrow k = \dfrac{{24}}{8}\]
\[ \Rightarrow k = 3\]
Substitute the value of \[k\] in \[{D_1},{D_2},{D_3}\] and we get
\[{D_1} = \left| {\begin{array}{*{20}{c}}{10}&{ - 2}&{ - 3}\\6&{ - 4}&{ - 2}\\{5m}&2&{ - 1}\end{array}} \right|\] , \[{D_2} = \left| {\begin{array}{*{20}{c}}3&{10}&{ - 3}\\2&6&{ - 2}\\1&{5m}&{ - 1}\end{array}} \right|\] and \[{D_3} = \left| {\begin{array}{*{20}{c}}3&{ - 2}&{10}\\2&{ - 4}&6\\1&2&{5m}\end{array}} \right|\]
Since the system of equations is inconsistent then \[{D_1} \ne 0,{D_2} \ne 0,{D_3} \ne 0\]
\[{D_1} = \left| {\begin{array}{*{20}{c}}{10}&{ - 2}&{ - 3}\\6&{ - 4}&{ - 2}\\{5m}&2&{ - 1}\end{array}} \right|\]
\[\left| {\begin{array}{*{20}{c}}{10}&{ - 2}&{ - 3}\\6&{ - 4}&{ - 2}\\{5m}&2&{ - 1}\end{array}} \right| = 10\left| {\begin{array}{*{20}{c}}{ - 4}&{ - 2}\\2&{ - 1}\end{array}} \right| - \left( { - 2} \right)\left| {\begin{array}{*{20}{c}}6&{ - 2}\\{5m}&{ - 1}\end{array}} \right| + \left( { - 3} \right)\left| {\begin{array}{*{20}{c}}6&{ - 4}\\{5m}&2\end{array}} \right|\]
\[ = 10\left( {\left( { - 4} \right)\left( { - 1} \right) - 2 \times \left( { - 2} \right)} \right) + 2\left( {6 \times \left( { - 1} \right) - 5m \times \left( { - 2} \right)} \right) - 3\left( {6 \times 2 - 5m \times \left( { - 4} \right)} \right)\]
\[ = 10\left( {4 + 4} \right) + 2\left( { - 6 + 10m} \right) - 3\left( {12 + 20m} \right)\]
\[ = 10 \times 8 - 12 + 20m - 36 - 60m\]
\[ = 80 - 12 - 36 - 40m\]
\[ = 32 - 40m\]
\[ = 8(4 - 5m)\]
Now \[{D_1} \ne 0\]
\[ \Rightarrow 8(4 - 5m) \ne 0\]
\[ \Rightarrow 4 - 5m \ne 0\]
\[ \Rightarrow 5m \ne 4\]
\[ \Rightarrow m \ne \dfrac{4}{5}\]
Therefore, the value of \[k = 3\] and \[m \ne \dfrac{4}{5}\] .
Hence the correct option is option D.
Note: The system of linear equations has not always a solution. There may exist unique solutions or infinitely many solutions or no solution. If the system is consistent then the system has either a unique solution or infinitely many solutions. If the system is inconsistent then the system has no solution. So, Cramer’s rule plays an important part for checking inconsistency of the system of linear equations. Cramer’s rule is not applicable if the equations have greater than three variables, applicable for only up to three variables.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

