
The system of linear equations \[3x - 2y - kz = 10,\,2x - 4y - 2z = 6\] and\[x + 2y - z = 5m\] is inconsistent if:
A. \[k = 3,m = \dfrac{4}{5}\]
B. \[k \ne 3,m \in \mathbb{R}\]
C. \[k \ne 3,m \ne \dfrac{4}{5}\]
D. \[k = 3,m \ne \dfrac{4}{5}\]
Answer
164.1k+ views
Hint: Firstly, we write the given system of equations in determinant form and using Cramer’s rule to get the condition of inconsistent. Now we use the condition of inconsistent to find the value of \[k\] and \[m\] .
Formula used:
Cramer’s Rule:
If the system of linear equations are
\[{a_1}x + {b_1}y + {c_1}z = {d_1}\] , where \[{a_1},{b_1},{c_1},{d_1}\] are constant values.
\[{a_2}x + {b_2}y + {c_2}z = {d_2}\], where \[{a_2},{b_2},{c_2},{d_2}\] are constant values.
\[{a_3}x + {b_3}y + {c_3}z = {d_3}\], where \[{a_3},{b_3},{c_3},{d_3}\] are constant values.
. Then we will get solution as
\[x = \dfrac{{{D_1}}}{D},y = \dfrac{{{D_2}}}{D},z = \dfrac{{{D_3}}}{D}\]
where \[D = \left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}} \right|,{D_1} = \left| {\begin{array}{*{20}{c}}{{d_1}}&{{b_1}}&{{c_1}}\\{{d_2}}&{{b_2}}&{{c_2}}\\{{d_3}}&{{b_3}}&{{c_3}}\end{array}} \right|,{D_2} = \left| {\begin{array}{*{20}{c}}{{a_1}}&{{d_1}}&{{c_1}}\\{{a_2}}&{{d_2}}&{{c_2}}\\{{a_3}}&{{d_3}}&{{c_3}}\end{array}} \right|,{D_3} = \left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{d_1}}\\{{a_2}}&{{b_2}}&{{d_2}}\\{{a_3}}&{{b_3}}&{{d_3}}\end{array}} \right|\]
(i) If \[D \ne 0\], then the system of equations is consistent.
(ii) If \[D = 0\] and at least one of \[{D_1},{D_2},{D_3}\] is non-zero then the given system is inconsistent.
(iii) If \[D = 0\] and \[{D_1} = {D_2} = {D_3} = 0\] then the system is consistent.
Determinant property: If a matrix given \[A = \left[ {\begin{array}{*{20}{c}}a&b&c\\d&e&f\\g&h&i\end{array}} \right]\] then
\[\left| A \right| = a\left| {\begin{array}{*{20}{c}}e&f\\h&i\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}d&f\\g&i\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}d&e\\g&h\end{array}} \right|\]
\[ \Rightarrow \left| A \right| = a\left( {ei - fh} \right) - b\left( {di - gf} \right) + c\left( {dh - eg} \right)\]
Complete step by step solution:
Given system of equations
\[3x - 2y - kz = 10\]
\[2x - 4y - 2z = 6\]
\[x + 2y - z = 5m\]
Using Cramer’s rule, we get
\[D = \left| {\begin{array}{*{20}{c}}3&{ - 2}&{ - k}\\2&{ - 4}&{ - 2}\\1&2&{ - 1}\end{array}} \right|\] , \[{D_1} = \left| {\begin{array}{*{20}{c}}{10}&{ - 2}&{ - k}\\6&{ - 4}&{ - 2}\\{5m}&2&{ - 1}\end{array}} \right|\] , \[{D_2} = \left| {\begin{array}{*{20}{c}}3&{10}&{ - k}\\2&6&{ - 2}\\1&{5m}&{ - 1}\end{array}} \right|\] and \[{D_3} = \left| {\begin{array}{*{20}{c}}3&{ - 2}&{10}\\2&{ - 4}&6\\1&2&{5m}\end{array}} \right|\]
Now finding the determinant of \[D = \left| {\begin{array}{*{20}{c}}3&{ - 2}&{ - k}\\2&{ - 4}&{ - 2}\\1&2&{ - 1}\end{array}} \right|\]
\[D = 3\left| {\begin{array}{*{20}{c}}{ - 4}&{ - 2}\\2&{ - 1}\end{array}} \right| - ( - 2)\left| {\begin{array}{*{20}{c}}2&{ - 2}\\1&{ - 1}\end{array}} \right| + \left( { - k} \right)\left| {\begin{array}{*{20}{c}}2&{ - 4}\\1&2\end{array}} \right|\]
\[ \Rightarrow D = 3\left( {( - 4)( - 1) - 2 \times \left( { - 2} \right)} \right) + 2\left( {2 \times \left( { - 1} \right) - \left( { - 1} \right) \times 2} \right) - k\left( {2 \times 2 - 1 \times \left( { - 4} \right)} \right)\]
\[ \Rightarrow D = 3\left( {4 + 4} \right) + 2\left( { - 2 + 2} \right) - k\left( {4 + 4} \right)\]
\[ \Rightarrow D = 3 \times 8 + 2 \times 0 - k \times 8\]
\[ \Rightarrow D = 24 - k \times 8\] ………………..(1)
If this system of equations are inconsistent then \[D = 0\]
Equation the equation (1) with ā\[D = 0\] and we get
\[ \Rightarrow 24 - 8k = 0\]
\[ \Rightarrow 8k = 24\]
\[ \Rightarrow k = \dfrac{{24}}{8}\]
\[ \Rightarrow k = 3\]
Substitute the value of \[k\] in \[{D_1},{D_2},{D_3}\] and we get
\[{D_1} = \left| {\begin{array}{*{20}{c}}{10}&{ - 2}&{ - 3}\\6&{ - 4}&{ - 2}\\{5m}&2&{ - 1}\end{array}} \right|\] , \[{D_2} = \left| {\begin{array}{*{20}{c}}3&{10}&{ - 3}\\2&6&{ - 2}\\1&{5m}&{ - 1}\end{array}} \right|\] and \[{D_3} = \left| {\begin{array}{*{20}{c}}3&{ - 2}&{10}\\2&{ - 4}&6\\1&2&{5m}\end{array}} \right|\]
Since the system of equations is inconsistent then \[{D_1} \ne 0,{D_2} \ne 0,{D_3} \ne 0\]
\[{D_1} = \left| {\begin{array}{*{20}{c}}{10}&{ - 2}&{ - 3}\\6&{ - 4}&{ - 2}\\{5m}&2&{ - 1}\end{array}} \right|\]
\[\left| {\begin{array}{*{20}{c}}{10}&{ - 2}&{ - 3}\\6&{ - 4}&{ - 2}\\{5m}&2&{ - 1}\end{array}} \right| = 10\left| {\begin{array}{*{20}{c}}{ - 4}&{ - 2}\\2&{ - 1}\end{array}} \right| - \left( { - 2} \right)\left| {\begin{array}{*{20}{c}}6&{ - 2}\\{5m}&{ - 1}\end{array}} \right| + \left( { - 3} \right)\left| {\begin{array}{*{20}{c}}6&{ - 4}\\{5m}&2\end{array}} \right|\]
\[ = 10\left( {\left( { - 4} \right)\left( { - 1} \right) - 2 \times \left( { - 2} \right)} \right) + 2\left( {6 \times \left( { - 1} \right) - 5m \times \left( { - 2} \right)} \right) - 3\left( {6 \times 2 - 5m \times \left( { - 4} \right)} \right)\]
\[ = 10\left( {4 + 4} \right) + 2\left( { - 6 + 10m} \right) - 3\left( {12 + 20m} \right)\]
\[ = 10 \times 8 - 12 + 20m - 36 - 60m\]
\[ = 80 - 12 - 36 - 40m\]
\[ = 32 - 40m\]
\[ = 8(4 - 5m)\]
Now \[{D_1} \ne 0\]
\[ \Rightarrow 8(4 - 5m) \ne 0\]
\[ \Rightarrow 4 - 5m \ne 0\]
\[ \Rightarrow 5m \ne 4\]
\[ \Rightarrow m \ne \dfrac{4}{5}\]
Therefore, the value of \[k = 3\] and \[m \ne \dfrac{4}{5}\] .
Hence the correct option is option D.
Note: The system of linear equations has not always a solution. There may exist unique solutions or infinitely many solutions or no solution. If the system is consistent then the system has either a unique solution or infinitely many solutions. If the system is inconsistent then the system has no solution. So, Cramer’s rule plays an important part for checking inconsistency of the system of linear equations. Cramer’s rule is not applicable if the equations have greater than three variables, applicable for only up to three variables.
Formula used:
Cramer’s Rule:
If the system of linear equations are
\[{a_1}x + {b_1}y + {c_1}z = {d_1}\] , where \[{a_1},{b_1},{c_1},{d_1}\] are constant values.
\[{a_2}x + {b_2}y + {c_2}z = {d_2}\], where \[{a_2},{b_2},{c_2},{d_2}\] are constant values.
\[{a_3}x + {b_3}y + {c_3}z = {d_3}\], where \[{a_3},{b_3},{c_3},{d_3}\] are constant values.
. Then we will get solution as
\[x = \dfrac{{{D_1}}}{D},y = \dfrac{{{D_2}}}{D},z = \dfrac{{{D_3}}}{D}\]
where \[D = \left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}} \right|,{D_1} = \left| {\begin{array}{*{20}{c}}{{d_1}}&{{b_1}}&{{c_1}}\\{{d_2}}&{{b_2}}&{{c_2}}\\{{d_3}}&{{b_3}}&{{c_3}}\end{array}} \right|,{D_2} = \left| {\begin{array}{*{20}{c}}{{a_1}}&{{d_1}}&{{c_1}}\\{{a_2}}&{{d_2}}&{{c_2}}\\{{a_3}}&{{d_3}}&{{c_3}}\end{array}} \right|,{D_3} = \left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{d_1}}\\{{a_2}}&{{b_2}}&{{d_2}}\\{{a_3}}&{{b_3}}&{{d_3}}\end{array}} \right|\]
(i) If \[D \ne 0\], then the system of equations is consistent.
(ii) If \[D = 0\] and at least one of \[{D_1},{D_2},{D_3}\] is non-zero then the given system is inconsistent.
(iii) If \[D = 0\] and \[{D_1} = {D_2} = {D_3} = 0\] then the system is consistent.
Determinant property: If a matrix given \[A = \left[ {\begin{array}{*{20}{c}}a&b&c\\d&e&f\\g&h&i\end{array}} \right]\] then
\[\left| A \right| = a\left| {\begin{array}{*{20}{c}}e&f\\h&i\end{array}} \right| - b\left| {\begin{array}{*{20}{c}}d&f\\g&i\end{array}} \right| + c\left| {\begin{array}{*{20}{c}}d&e\\g&h\end{array}} \right|\]
\[ \Rightarrow \left| A \right| = a\left( {ei - fh} \right) - b\left( {di - gf} \right) + c\left( {dh - eg} \right)\]
Complete step by step solution:
Given system of equations
\[3x - 2y - kz = 10\]
\[2x - 4y - 2z = 6\]
\[x + 2y - z = 5m\]
Using Cramer’s rule, we get
\[D = \left| {\begin{array}{*{20}{c}}3&{ - 2}&{ - k}\\2&{ - 4}&{ - 2}\\1&2&{ - 1}\end{array}} \right|\] , \[{D_1} = \left| {\begin{array}{*{20}{c}}{10}&{ - 2}&{ - k}\\6&{ - 4}&{ - 2}\\{5m}&2&{ - 1}\end{array}} \right|\] , \[{D_2} = \left| {\begin{array}{*{20}{c}}3&{10}&{ - k}\\2&6&{ - 2}\\1&{5m}&{ - 1}\end{array}} \right|\] and \[{D_3} = \left| {\begin{array}{*{20}{c}}3&{ - 2}&{10}\\2&{ - 4}&6\\1&2&{5m}\end{array}} \right|\]
Now finding the determinant of \[D = \left| {\begin{array}{*{20}{c}}3&{ - 2}&{ - k}\\2&{ - 4}&{ - 2}\\1&2&{ - 1}\end{array}} \right|\]
\[D = 3\left| {\begin{array}{*{20}{c}}{ - 4}&{ - 2}\\2&{ - 1}\end{array}} \right| - ( - 2)\left| {\begin{array}{*{20}{c}}2&{ - 2}\\1&{ - 1}\end{array}} \right| + \left( { - k} \right)\left| {\begin{array}{*{20}{c}}2&{ - 4}\\1&2\end{array}} \right|\]
\[ \Rightarrow D = 3\left( {( - 4)( - 1) - 2 \times \left( { - 2} \right)} \right) + 2\left( {2 \times \left( { - 1} \right) - \left( { - 1} \right) \times 2} \right) - k\left( {2 \times 2 - 1 \times \left( { - 4} \right)} \right)\]
\[ \Rightarrow D = 3\left( {4 + 4} \right) + 2\left( { - 2 + 2} \right) - k\left( {4 + 4} \right)\]
\[ \Rightarrow D = 3 \times 8 + 2 \times 0 - k \times 8\]
\[ \Rightarrow D = 24 - k \times 8\] ………………..(1)
If this system of equations are inconsistent then \[D = 0\]
Equation the equation (1) with ā\[D = 0\] and we get
\[ \Rightarrow 24 - 8k = 0\]
\[ \Rightarrow 8k = 24\]
\[ \Rightarrow k = \dfrac{{24}}{8}\]
\[ \Rightarrow k = 3\]
Substitute the value of \[k\] in \[{D_1},{D_2},{D_3}\] and we get
\[{D_1} = \left| {\begin{array}{*{20}{c}}{10}&{ - 2}&{ - 3}\\6&{ - 4}&{ - 2}\\{5m}&2&{ - 1}\end{array}} \right|\] , \[{D_2} = \left| {\begin{array}{*{20}{c}}3&{10}&{ - 3}\\2&6&{ - 2}\\1&{5m}&{ - 1}\end{array}} \right|\] and \[{D_3} = \left| {\begin{array}{*{20}{c}}3&{ - 2}&{10}\\2&{ - 4}&6\\1&2&{5m}\end{array}} \right|\]
Since the system of equations is inconsistent then \[{D_1} \ne 0,{D_2} \ne 0,{D_3} \ne 0\]
\[{D_1} = \left| {\begin{array}{*{20}{c}}{10}&{ - 2}&{ - 3}\\6&{ - 4}&{ - 2}\\{5m}&2&{ - 1}\end{array}} \right|\]
\[\left| {\begin{array}{*{20}{c}}{10}&{ - 2}&{ - 3}\\6&{ - 4}&{ - 2}\\{5m}&2&{ - 1}\end{array}} \right| = 10\left| {\begin{array}{*{20}{c}}{ - 4}&{ - 2}\\2&{ - 1}\end{array}} \right| - \left( { - 2} \right)\left| {\begin{array}{*{20}{c}}6&{ - 2}\\{5m}&{ - 1}\end{array}} \right| + \left( { - 3} \right)\left| {\begin{array}{*{20}{c}}6&{ - 4}\\{5m}&2\end{array}} \right|\]
\[ = 10\left( {\left( { - 4} \right)\left( { - 1} \right) - 2 \times \left( { - 2} \right)} \right) + 2\left( {6 \times \left( { - 1} \right) - 5m \times \left( { - 2} \right)} \right) - 3\left( {6 \times 2 - 5m \times \left( { - 4} \right)} \right)\]
\[ = 10\left( {4 + 4} \right) + 2\left( { - 6 + 10m} \right) - 3\left( {12 + 20m} \right)\]
\[ = 10 \times 8 - 12 + 20m - 36 - 60m\]
\[ = 80 - 12 - 36 - 40m\]
\[ = 32 - 40m\]
\[ = 8(4 - 5m)\]
Now \[{D_1} \ne 0\]
\[ \Rightarrow 8(4 - 5m) \ne 0\]
\[ \Rightarrow 4 - 5m \ne 0\]
\[ \Rightarrow 5m \ne 4\]
\[ \Rightarrow m \ne \dfrac{4}{5}\]
Therefore, the value of \[k = 3\] and \[m \ne \dfrac{4}{5}\] .
Hence the correct option is option D.
Note: The system of linear equations has not always a solution. There may exist unique solutions or infinitely many solutions or no solution. If the system is consistent then the system has either a unique solution or infinitely many solutions. If the system is inconsistent then the system has no solution. So, Cramer’s rule plays an important part for checking inconsistency of the system of linear equations. Cramer’s rule is not applicable if the equations have greater than three variables, applicable for only up to three variables.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges
