
The smallest interval $[a,b]$ such that $\int\limits_{0}^{1}{\dfrac{dx}{\sqrt{1+{{x}^{4}}}}}\in [a,b]$ is given by
A. $\left[ \dfrac{1}{\sqrt{2}},1 \right]$
B. $[0,1]$
C. $\left[ \dfrac{1}{2},2 \right]$
D. $\left[ \dfrac{3}{4},1 \right]$
Answer
216k+ views
Hint: In this question, we are to find the smallest interval that satisfies the given integral. For this, the limits of the given integral are altered in such a way that we get the required smallest interval for the given integral.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called as the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ - lower limit and $b$- upper limit.
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Complete step by step solution:Consider the given integral as
$I=\int\limits_{0}^{1}{\dfrac{dx}{\sqrt{1+{{x}^{4}}}}}$
The given integral has the interval as $0\le x\le 1$
For the required integral, we can alter the interval as
$0\le x\le 1$
On squaring, we get
$\Rightarrow 0\le {{x}^{2}}\le 1$
Again, on squaring, we get
$\Rightarrow 0\le {{x}^{4}}\le 1$
Adding $1$ on both sides,
$\begin{align}
& \Rightarrow 1+0\le 1+{{x}^{4}}\le 1+1 \\
& \Rightarrow 1\le 1+{{x}^{4}}\le 2 \\
\end{align}$
Applying square root, we get
$\begin{align}
& \Rightarrow \sqrt{1}\le \sqrt{1+{{x}^{4}}}\le \sqrt{2} \\
& \Rightarrow 1\le \sqrt{1+{{x}^{4}}}\le \sqrt{2} \\
\end{align}$
We need the required variable in the denominator. So, if the terms in inequality are inverted or reciprocated then the inequality gets changed. I.e.,
\[\begin{align}
& \Rightarrow 1\le \sqrt{1+{{x}^{4}}}\le \sqrt{2} \\
& \Rightarrow \dfrac{1}{1}\ge \dfrac{1}{\sqrt{1+{{x}^{4}}}}\ge \dfrac{1}{\sqrt{2}} \\
& \Rightarrow \dfrac{1}{\sqrt{2}}\le \dfrac{1}{\sqrt{1+{{x}^{4}}}}\le 1 \\
\end{align}\]
Thus, we can write,
$\begin{align}
& \Rightarrow \dfrac{1}{\sqrt{2}}\le \int\limits_{0}^{1}{\dfrac{dx}{\sqrt{1+{{x}^{4}}}}}\le 1 \\
& \therefore I\in \left[ \dfrac{1}{\sqrt{2}},1 \right] \\
\end{align}$
Here the smallest interval is defined for an integral as
$m(b-a)\le \int\limits_{a}^{b}{f(x)dx\le M(b-a)}$
Where $m(b-a)$ is the smallest value of $f(x)$ and $M(b-a)$ is the highest value of $f(x)$.
Option ‘A’ is correct
Note: Here we need to remember that the required limits are obtained by altering the limits of the given integral.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called as the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ - lower limit and $b$- upper limit.
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Complete step by step solution:Consider the given integral as
$I=\int\limits_{0}^{1}{\dfrac{dx}{\sqrt{1+{{x}^{4}}}}}$
The given integral has the interval as $0\le x\le 1$
For the required integral, we can alter the interval as
$0\le x\le 1$
On squaring, we get
$\Rightarrow 0\le {{x}^{2}}\le 1$
Again, on squaring, we get
$\Rightarrow 0\le {{x}^{4}}\le 1$
Adding $1$ on both sides,
$\begin{align}
& \Rightarrow 1+0\le 1+{{x}^{4}}\le 1+1 \\
& \Rightarrow 1\le 1+{{x}^{4}}\le 2 \\
\end{align}$
Applying square root, we get
$\begin{align}
& \Rightarrow \sqrt{1}\le \sqrt{1+{{x}^{4}}}\le \sqrt{2} \\
& \Rightarrow 1\le \sqrt{1+{{x}^{4}}}\le \sqrt{2} \\
\end{align}$
We need the required variable in the denominator. So, if the terms in inequality are inverted or reciprocated then the inequality gets changed. I.e.,
\[\begin{align}
& \Rightarrow 1\le \sqrt{1+{{x}^{4}}}\le \sqrt{2} \\
& \Rightarrow \dfrac{1}{1}\ge \dfrac{1}{\sqrt{1+{{x}^{4}}}}\ge \dfrac{1}{\sqrt{2}} \\
& \Rightarrow \dfrac{1}{\sqrt{2}}\le \dfrac{1}{\sqrt{1+{{x}^{4}}}}\le 1 \\
\end{align}\]
Thus, we can write,
$\begin{align}
& \Rightarrow \dfrac{1}{\sqrt{2}}\le \int\limits_{0}^{1}{\dfrac{dx}{\sqrt{1+{{x}^{4}}}}}\le 1 \\
& \therefore I\in \left[ \dfrac{1}{\sqrt{2}},1 \right] \\
\end{align}$
Here the smallest interval is defined for an integral as
$m(b-a)\le \int\limits_{a}^{b}{f(x)dx\le M(b-a)}$
Where $m(b-a)$ is the smallest value of $f(x)$ and $M(b-a)$ is the highest value of $f(x)$.
Option ‘A’ is correct
Note: Here we need to remember that the required limits are obtained by altering the limits of the given integral.
Recently Updated Pages
Alpha, Beta, and Gamma Decay Explained

Alpha Particle Scattering and Rutherford Model Explained

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Applications of Echo in Daily Life and Science

Average and RMS Value Explained: Formulas & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

