
The smallest interval $[a,b]$ such that $\int\limits_{0}^{1}{\dfrac{dx}{\sqrt{1+{{x}^{4}}}}}\in [a,b]$ is given by
A. $\left[ \dfrac{1}{\sqrt{2}},1 \right]$
B. $[0,1]$
C. $\left[ \dfrac{1}{2},2 \right]$
D. $\left[ \dfrac{3}{4},1 \right]$
Answer
161.1k+ views
Hint: In this question, we are to find the smallest interval that satisfies the given integral. For this, the limits of the given integral are altered in such a way that we get the required smallest interval for the given integral.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called as the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ - lower limit and $b$- upper limit.
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Complete step by step solution:Consider the given integral as
$I=\int\limits_{0}^{1}{\dfrac{dx}{\sqrt{1+{{x}^{4}}}}}$
The given integral has the interval as $0\le x\le 1$
For the required integral, we can alter the interval as
$0\le x\le 1$
On squaring, we get
$\Rightarrow 0\le {{x}^{2}}\le 1$
Again, on squaring, we get
$\Rightarrow 0\le {{x}^{4}}\le 1$
Adding $1$ on both sides,
$\begin{align}
& \Rightarrow 1+0\le 1+{{x}^{4}}\le 1+1 \\
& \Rightarrow 1\le 1+{{x}^{4}}\le 2 \\
\end{align}$
Applying square root, we get
$\begin{align}
& \Rightarrow \sqrt{1}\le \sqrt{1+{{x}^{4}}}\le \sqrt{2} \\
& \Rightarrow 1\le \sqrt{1+{{x}^{4}}}\le \sqrt{2} \\
\end{align}$
We need the required variable in the denominator. So, if the terms in inequality are inverted or reciprocated then the inequality gets changed. I.e.,
\[\begin{align}
& \Rightarrow 1\le \sqrt{1+{{x}^{4}}}\le \sqrt{2} \\
& \Rightarrow \dfrac{1}{1}\ge \dfrac{1}{\sqrt{1+{{x}^{4}}}}\ge \dfrac{1}{\sqrt{2}} \\
& \Rightarrow \dfrac{1}{\sqrt{2}}\le \dfrac{1}{\sqrt{1+{{x}^{4}}}}\le 1 \\
\end{align}\]
Thus, we can write,
$\begin{align}
& \Rightarrow \dfrac{1}{\sqrt{2}}\le \int\limits_{0}^{1}{\dfrac{dx}{\sqrt{1+{{x}^{4}}}}}\le 1 \\
& \therefore I\in \left[ \dfrac{1}{\sqrt{2}},1 \right] \\
\end{align}$
Here the smallest interval is defined for an integral as
$m(b-a)\le \int\limits_{a}^{b}{f(x)dx\le M(b-a)}$
Where $m(b-a)$ is the smallest value of $f(x)$ and $M(b-a)$ is the highest value of $f(x)$.
Option ‘A’ is correct
Note: Here we need to remember that the required limits are obtained by altering the limits of the given integral.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called as the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ - lower limit and $b$- upper limit.
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Complete step by step solution:Consider the given integral as
$I=\int\limits_{0}^{1}{\dfrac{dx}{\sqrt{1+{{x}^{4}}}}}$
The given integral has the interval as $0\le x\le 1$
For the required integral, we can alter the interval as
$0\le x\le 1$
On squaring, we get
$\Rightarrow 0\le {{x}^{2}}\le 1$
Again, on squaring, we get
$\Rightarrow 0\le {{x}^{4}}\le 1$
Adding $1$ on both sides,
$\begin{align}
& \Rightarrow 1+0\le 1+{{x}^{4}}\le 1+1 \\
& \Rightarrow 1\le 1+{{x}^{4}}\le 2 \\
\end{align}$
Applying square root, we get
$\begin{align}
& \Rightarrow \sqrt{1}\le \sqrt{1+{{x}^{4}}}\le \sqrt{2} \\
& \Rightarrow 1\le \sqrt{1+{{x}^{4}}}\le \sqrt{2} \\
\end{align}$
We need the required variable in the denominator. So, if the terms in inequality are inverted or reciprocated then the inequality gets changed. I.e.,
\[\begin{align}
& \Rightarrow 1\le \sqrt{1+{{x}^{4}}}\le \sqrt{2} \\
& \Rightarrow \dfrac{1}{1}\ge \dfrac{1}{\sqrt{1+{{x}^{4}}}}\ge \dfrac{1}{\sqrt{2}} \\
& \Rightarrow \dfrac{1}{\sqrt{2}}\le \dfrac{1}{\sqrt{1+{{x}^{4}}}}\le 1 \\
\end{align}\]
Thus, we can write,
$\begin{align}
& \Rightarrow \dfrac{1}{\sqrt{2}}\le \int\limits_{0}^{1}{\dfrac{dx}{\sqrt{1+{{x}^{4}}}}}\le 1 \\
& \therefore I\in \left[ \dfrac{1}{\sqrt{2}},1 \right] \\
\end{align}$
Here the smallest interval is defined for an integral as
$m(b-a)\le \int\limits_{a}^{b}{f(x)dx\le M(b-a)}$
Where $m(b-a)$ is the smallest value of $f(x)$ and $M(b-a)$ is the highest value of $f(x)$.
Option ‘A’ is correct
Note: Here we need to remember that the required limits are obtained by altering the limits of the given integral.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
