
The smallest interval $[a,b]$ such that $\int\limits_{0}^{1}{\dfrac{dx}{\sqrt{1+{{x}^{4}}}}}\in [a,b]$ is given by
A. $\left[ \dfrac{1}{\sqrt{2}},1 \right]$
B. $[0,1]$
C. $\left[ \dfrac{1}{2},2 \right]$
D. $\left[ \dfrac{3}{4},1 \right]$
Answer
162.9k+ views
Hint: In this question, we are to find the smallest interval that satisfies the given integral. For this, the limits of the given integral are altered in such a way that we get the required smallest interval for the given integral.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called as the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ - lower limit and $b$- upper limit.
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Complete step by step solution:Consider the given integral as
$I=\int\limits_{0}^{1}{\dfrac{dx}{\sqrt{1+{{x}^{4}}}}}$
The given integral has the interval as $0\le x\le 1$
For the required integral, we can alter the interval as
$0\le x\le 1$
On squaring, we get
$\Rightarrow 0\le {{x}^{2}}\le 1$
Again, on squaring, we get
$\Rightarrow 0\le {{x}^{4}}\le 1$
Adding $1$ on both sides,
$\begin{align}
& \Rightarrow 1+0\le 1+{{x}^{4}}\le 1+1 \\
& \Rightarrow 1\le 1+{{x}^{4}}\le 2 \\
\end{align}$
Applying square root, we get
$\begin{align}
& \Rightarrow \sqrt{1}\le \sqrt{1+{{x}^{4}}}\le \sqrt{2} \\
& \Rightarrow 1\le \sqrt{1+{{x}^{4}}}\le \sqrt{2} \\
\end{align}$
We need the required variable in the denominator. So, if the terms in inequality are inverted or reciprocated then the inequality gets changed. I.e.,
\[\begin{align}
& \Rightarrow 1\le \sqrt{1+{{x}^{4}}}\le \sqrt{2} \\
& \Rightarrow \dfrac{1}{1}\ge \dfrac{1}{\sqrt{1+{{x}^{4}}}}\ge \dfrac{1}{\sqrt{2}} \\
& \Rightarrow \dfrac{1}{\sqrt{2}}\le \dfrac{1}{\sqrt{1+{{x}^{4}}}}\le 1 \\
\end{align}\]
Thus, we can write,
$\begin{align}
& \Rightarrow \dfrac{1}{\sqrt{2}}\le \int\limits_{0}^{1}{\dfrac{dx}{\sqrt{1+{{x}^{4}}}}}\le 1 \\
& \therefore I\in \left[ \dfrac{1}{\sqrt{2}},1 \right] \\
\end{align}$
Here the smallest interval is defined for an integral as
$m(b-a)\le \int\limits_{a}^{b}{f(x)dx\le M(b-a)}$
Where $m(b-a)$ is the smallest value of $f(x)$ and $M(b-a)$ is the highest value of $f(x)$.
Option ‘A’ is correct
Note: Here we need to remember that the required limits are obtained by altering the limits of the given integral.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called as the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ - lower limit and $b$- upper limit.
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
Complete step by step solution:Consider the given integral as
$I=\int\limits_{0}^{1}{\dfrac{dx}{\sqrt{1+{{x}^{4}}}}}$
The given integral has the interval as $0\le x\le 1$
For the required integral, we can alter the interval as
$0\le x\le 1$
On squaring, we get
$\Rightarrow 0\le {{x}^{2}}\le 1$
Again, on squaring, we get
$\Rightarrow 0\le {{x}^{4}}\le 1$
Adding $1$ on both sides,
$\begin{align}
& \Rightarrow 1+0\le 1+{{x}^{4}}\le 1+1 \\
& \Rightarrow 1\le 1+{{x}^{4}}\le 2 \\
\end{align}$
Applying square root, we get
$\begin{align}
& \Rightarrow \sqrt{1}\le \sqrt{1+{{x}^{4}}}\le \sqrt{2} \\
& \Rightarrow 1\le \sqrt{1+{{x}^{4}}}\le \sqrt{2} \\
\end{align}$
We need the required variable in the denominator. So, if the terms in inequality are inverted or reciprocated then the inequality gets changed. I.e.,
\[\begin{align}
& \Rightarrow 1\le \sqrt{1+{{x}^{4}}}\le \sqrt{2} \\
& \Rightarrow \dfrac{1}{1}\ge \dfrac{1}{\sqrt{1+{{x}^{4}}}}\ge \dfrac{1}{\sqrt{2}} \\
& \Rightarrow \dfrac{1}{\sqrt{2}}\le \dfrac{1}{\sqrt{1+{{x}^{4}}}}\le 1 \\
\end{align}\]
Thus, we can write,
$\begin{align}
& \Rightarrow \dfrac{1}{\sqrt{2}}\le \int\limits_{0}^{1}{\dfrac{dx}{\sqrt{1+{{x}^{4}}}}}\le 1 \\
& \therefore I\in \left[ \dfrac{1}{\sqrt{2}},1 \right] \\
\end{align}$
Here the smallest interval is defined for an integral as
$m(b-a)\le \int\limits_{a}^{b}{f(x)dx\le M(b-a)}$
Where $m(b-a)$ is the smallest value of $f(x)$ and $M(b-a)$ is the highest value of $f(x)$.
Option ‘A’ is correct
Note: Here we need to remember that the required limits are obtained by altering the limits of the given integral.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025

1 Billion in Rupees
