
The rusting of iron takes place as follows:
$\
2{H^ \oplus } + 2{e^ - } + \dfrac{1}{2}{O_2} \to {{\text{H}}_2}{\text{O}}\left( l \right);{E^ \odot } = + 1.23V \\
F{e^{2 + }} + 2{e^ - } \to Fe\left( s \right);{E^ \odot } = - 044V \\
\ $
Calculate $\Delta {G^ \odot }$ for the net process.
A.$ - 322{\text{ kJmo}}{{\text{l}}^{{\text{ - 1}}}}$
B.$ - 161{\text{ kJmo}}{{\text{l}}^{{\text{ - 1}}}}$
C.$ - 125{\text{ kJmo}}{{\text{l}}^{{\text{ - 1}}}}$
D.$ - 76{\text{ kJmo}}{{\text{l}}^{{\text{ - 1}}}}$
Answer
221.1k+ views
Hint: Standard cell potential of both reactions is given. Use this formula to calculate Gibbs energy change-
$\Delta {G^ \odot } = - nF{E^ \odot }$ where n=moles of electrons from balanced Redox reaction, F is faraday constant whose value is $96458{\text{ C/mol}}$ and ${E^ \odot }$ is the standard cell potential .Then apply $\Delta G_{net}^ \odot = \Delta G_1^ \odot + \Delta G_2^ \odot $to calculate the net value.
Step-by-Step Explanation-The Given reactions are-
At Cathode:
$\
2{H^ \oplus } + 2{e^ - } + \dfrac{1}{2}{O_2} \to {{\text{H}}_2}{\text{O}}\left( l \right);{E^ \odot } = + 1.23V \\
\\
\ $
Then n=$2$ .Now using formula-
$ \Rightarrow $ $\Delta {G^ \odot } = - nF{E^ \odot }$ Where n=moles of electrons from balanced Redox reaction, F is faraday constant whose value is $96458{\text{ C/mol}}$ and ${E^ \odot }$ is the standard cell potential
On putting the given values we get,
$ \Rightarrow \Delta G_1^ \odot = - 2 \times F \times \left( {1.23} \right)$
On solving we get,
$ \Rightarrow \Delta G_1^ \odot = - 2.46F$ --- (i)
Now at Anode:
$F{e^{2 + }} + 2{e^ - } \to Fe\left( s \right);{E^ \odot } = - 044V$
Then n=$2$.Now using formula-
$ \Rightarrow $ $\Delta {G^ \odot } = - nF{E^ \odot }$ Where n=moles of electrons from balanced Redox reaction, F is faraday constant whose value is $96458{\text{ C/mol}}$ and ${E^ \odot }$ is the standard cell potential
On putting the given values we get,
$ \Rightarrow \Delta G_2^ \odot = - 2 \times F \times \left( {0.44} \right)$
On solving we get,
$ \Rightarrow \Delta G_2^ \odot = - 0.88F$ --- (ii)
Now on applying formula
$ \Rightarrow \Delta G_{net}^ \odot = \Delta G_1^ \odot + \Delta G_2^ \odot $
On putting the values from eq. (i) and (ii) in this formula we get,
$ \Rightarrow \Delta G_{net}^ \odot = \left[ { - 2.46F} \right] + \left[ { - 0.88F} \right]$
On simplifying we get,
$ \Rightarrow \Delta G_{net}^ \odot = - 3.34F$
And we know the value of Faraday constant, so on putting the value we get,
$ \Rightarrow \Delta G_{net}^ \odot = - 3.34 \times 96458$${\text{Jmo}}{{\text{l}}^{{\text{ - 1}}}}$
$ \Rightarrow \Delta G_{net}^ \odot = - 322169.72$ ${\text{Jmo}}{{\text{l}}^{{\text{ - 1}}}}$
We know that $1{\text{KJ = 1000J}}$
Then$\Delta G_{net}^ \odot = - 322169.72 \times 1000{\text{ KJmo}}{{\text{l}}^{{\text{ - 1}}}}$
\[ \Rightarrow \Delta G_{net}^ \odot = - 322.169{\text{ KJmo}}{{\text{l}}^{{\text{ - 1}}}}\]
Hence correct option is A.
Note: $\Delta {G^ \odot }$ is Gibbs energy change for a system under standard conditions while $\Delta G$ is Gibbs free energy for a system. $\Delta {G^ \odot }$ is also given as –
$ \Rightarrow \Delta {G^ \odot } = - RT\ln K$
Where $R = 8.314{\text{ Jmol}}{{\text{C}}^{ - 1}}$ is gas constant, T=Temperature and K is equilibrium constant of a reaction.
Gibbs free energy is given as-$\Delta G = \Delta H - T\Delta S$ where $\Delta H$ is change in enthalpy, $\Delta S$ is change in entropy and T is the temperature.
$\Delta {G^ \odot } = - nF{E^ \odot }$ where n=moles of electrons from balanced Redox reaction, F is faraday constant whose value is $96458{\text{ C/mol}}$ and ${E^ \odot }$ is the standard cell potential .Then apply $\Delta G_{net}^ \odot = \Delta G_1^ \odot + \Delta G_2^ \odot $to calculate the net value.
Step-by-Step Explanation-The Given reactions are-
At Cathode:
$\
2{H^ \oplus } + 2{e^ - } + \dfrac{1}{2}{O_2} \to {{\text{H}}_2}{\text{O}}\left( l \right);{E^ \odot } = + 1.23V \\
\\
\ $
Then n=$2$ .Now using formula-
$ \Rightarrow $ $\Delta {G^ \odot } = - nF{E^ \odot }$ Where n=moles of electrons from balanced Redox reaction, F is faraday constant whose value is $96458{\text{ C/mol}}$ and ${E^ \odot }$ is the standard cell potential
On putting the given values we get,
$ \Rightarrow \Delta G_1^ \odot = - 2 \times F \times \left( {1.23} \right)$
On solving we get,
$ \Rightarrow \Delta G_1^ \odot = - 2.46F$ --- (i)
Now at Anode:
$F{e^{2 + }} + 2{e^ - } \to Fe\left( s \right);{E^ \odot } = - 044V$
Then n=$2$.Now using formula-
$ \Rightarrow $ $\Delta {G^ \odot } = - nF{E^ \odot }$ Where n=moles of electrons from balanced Redox reaction, F is faraday constant whose value is $96458{\text{ C/mol}}$ and ${E^ \odot }$ is the standard cell potential
On putting the given values we get,
$ \Rightarrow \Delta G_2^ \odot = - 2 \times F \times \left( {0.44} \right)$
On solving we get,
$ \Rightarrow \Delta G_2^ \odot = - 0.88F$ --- (ii)
Now on applying formula
$ \Rightarrow \Delta G_{net}^ \odot = \Delta G_1^ \odot + \Delta G_2^ \odot $
On putting the values from eq. (i) and (ii) in this formula we get,
$ \Rightarrow \Delta G_{net}^ \odot = \left[ { - 2.46F} \right] + \left[ { - 0.88F} \right]$
On simplifying we get,
$ \Rightarrow \Delta G_{net}^ \odot = - 3.34F$
And we know the value of Faraday constant, so on putting the value we get,
$ \Rightarrow \Delta G_{net}^ \odot = - 3.34 \times 96458$${\text{Jmo}}{{\text{l}}^{{\text{ - 1}}}}$
$ \Rightarrow \Delta G_{net}^ \odot = - 322169.72$ ${\text{Jmo}}{{\text{l}}^{{\text{ - 1}}}}$
We know that $1{\text{KJ = 1000J}}$
Then$\Delta G_{net}^ \odot = - 322169.72 \times 1000{\text{ KJmo}}{{\text{l}}^{{\text{ - 1}}}}$
\[ \Rightarrow \Delta G_{net}^ \odot = - 322.169{\text{ KJmo}}{{\text{l}}^{{\text{ - 1}}}}\]
Hence correct option is A.
Note: $\Delta {G^ \odot }$ is Gibbs energy change for a system under standard conditions while $\Delta G$ is Gibbs free energy for a system. $\Delta {G^ \odot }$ is also given as –
$ \Rightarrow \Delta {G^ \odot } = - RT\ln K$
Where $R = 8.314{\text{ Jmol}}{{\text{C}}^{ - 1}}$ is gas constant, T=Temperature and K is equilibrium constant of a reaction.
Gibbs free energy is given as-$\Delta G = \Delta H - T\Delta S$ where $\Delta H$ is change in enthalpy, $\Delta S$ is change in entropy and T is the temperature.
Recently Updated Pages
Difference Between Alcohol and Phenol: Structure, Tests & Uses

Classification of Drugs in Chemistry: Types, Examples & Exam Guide

Class 12 Chemistry Mock Test Series for JEE Main – Free Online Practice

Is PPh3 a strong ligand class 12 chemistry JEE_Main

Full name of DDT is A 111trichloro22bispchlorophenyl class 12 chemistry JEE_Main

Sodium acetate on heating with soda lime produce A class 12 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions - 2025-26

The D and F Block Elements Class 12 Chemistry Chapter 4 CBSE Notes - 2025-26

NCERT Solutions for Class 12 Chemistry Chapter Chapter 7 Alcohol Phenol and Ether

NCERT Solutions ForClass 12 Chemistry Chapter Chapter 8 Aldehydes Ketones And Carboxylic Acids

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

