
The rusting of iron takes place as follows:
$\
2{H^ \oplus } + 2{e^ - } + \dfrac{1}{2}{O_2} \to {{\text{H}}_2}{\text{O}}\left( l \right);{E^ \odot } = + 1.23V \\
F{e^{2 + }} + 2{e^ - } \to Fe\left( s \right);{E^ \odot } = - 044V \\
\ $
Calculate $\Delta {G^ \odot }$ for the net process.
A.$ - 322{\text{ kJmo}}{{\text{l}}^{{\text{ - 1}}}}$
B.$ - 161{\text{ kJmo}}{{\text{l}}^{{\text{ - 1}}}}$
C.$ - 125{\text{ kJmo}}{{\text{l}}^{{\text{ - 1}}}}$
D.$ - 76{\text{ kJmo}}{{\text{l}}^{{\text{ - 1}}}}$
Answer
152.7k+ views
Hint: Standard cell potential of both reactions is given. Use this formula to calculate Gibbs energy change-
$\Delta {G^ \odot } = - nF{E^ \odot }$ where n=moles of electrons from balanced Redox reaction, F is faraday constant whose value is $96458{\text{ C/mol}}$ and ${E^ \odot }$ is the standard cell potential .Then apply $\Delta G_{net}^ \odot = \Delta G_1^ \odot + \Delta G_2^ \odot $to calculate the net value.
Step-by-Step Explanation-The Given reactions are-
At Cathode:
$\
2{H^ \oplus } + 2{e^ - } + \dfrac{1}{2}{O_2} \to {{\text{H}}_2}{\text{O}}\left( l \right);{E^ \odot } = + 1.23V \\
\\
\ $
Then n=$2$ .Now using formula-
$ \Rightarrow $ $\Delta {G^ \odot } = - nF{E^ \odot }$ Where n=moles of electrons from balanced Redox reaction, F is faraday constant whose value is $96458{\text{ C/mol}}$ and ${E^ \odot }$ is the standard cell potential
On putting the given values we get,
$ \Rightarrow \Delta G_1^ \odot = - 2 \times F \times \left( {1.23} \right)$
On solving we get,
$ \Rightarrow \Delta G_1^ \odot = - 2.46F$ --- (i)
Now at Anode:
$F{e^{2 + }} + 2{e^ - } \to Fe\left( s \right);{E^ \odot } = - 044V$
Then n=$2$.Now using formula-
$ \Rightarrow $ $\Delta {G^ \odot } = - nF{E^ \odot }$ Where n=moles of electrons from balanced Redox reaction, F is faraday constant whose value is $96458{\text{ C/mol}}$ and ${E^ \odot }$ is the standard cell potential
On putting the given values we get,
$ \Rightarrow \Delta G_2^ \odot = - 2 \times F \times \left( {0.44} \right)$
On solving we get,
$ \Rightarrow \Delta G_2^ \odot = - 0.88F$ --- (ii)
Now on applying formula
$ \Rightarrow \Delta G_{net}^ \odot = \Delta G_1^ \odot + \Delta G_2^ \odot $
On putting the values from eq. (i) and (ii) in this formula we get,
$ \Rightarrow \Delta G_{net}^ \odot = \left[ { - 2.46F} \right] + \left[ { - 0.88F} \right]$
On simplifying we get,
$ \Rightarrow \Delta G_{net}^ \odot = - 3.34F$
And we know the value of Faraday constant, so on putting the value we get,
$ \Rightarrow \Delta G_{net}^ \odot = - 3.34 \times 96458$${\text{Jmo}}{{\text{l}}^{{\text{ - 1}}}}$
$ \Rightarrow \Delta G_{net}^ \odot = - 322169.72$ ${\text{Jmo}}{{\text{l}}^{{\text{ - 1}}}}$
We know that $1{\text{KJ = 1000J}}$
Then$\Delta G_{net}^ \odot = - 322169.72 \times 1000{\text{ KJmo}}{{\text{l}}^{{\text{ - 1}}}}$
\[ \Rightarrow \Delta G_{net}^ \odot = - 322.169{\text{ KJmo}}{{\text{l}}^{{\text{ - 1}}}}\]
Hence correct option is A.
Note: $\Delta {G^ \odot }$ is Gibbs energy change for a system under standard conditions while $\Delta G$ is Gibbs free energy for a system. $\Delta {G^ \odot }$ is also given as –
$ \Rightarrow \Delta {G^ \odot } = - RT\ln K$
Where $R = 8.314{\text{ Jmol}}{{\text{C}}^{ - 1}}$ is gas constant, T=Temperature and K is equilibrium constant of a reaction.
Gibbs free energy is given as-$\Delta G = \Delta H - T\Delta S$ where $\Delta H$ is change in enthalpy, $\Delta S$ is change in entropy and T is the temperature.
$\Delta {G^ \odot } = - nF{E^ \odot }$ where n=moles of electrons from balanced Redox reaction, F is faraday constant whose value is $96458{\text{ C/mol}}$ and ${E^ \odot }$ is the standard cell potential .Then apply $\Delta G_{net}^ \odot = \Delta G_1^ \odot + \Delta G_2^ \odot $to calculate the net value.
Step-by-Step Explanation-The Given reactions are-
At Cathode:
$\
2{H^ \oplus } + 2{e^ - } + \dfrac{1}{2}{O_2} \to {{\text{H}}_2}{\text{O}}\left( l \right);{E^ \odot } = + 1.23V \\
\\
\ $
Then n=$2$ .Now using formula-
$ \Rightarrow $ $\Delta {G^ \odot } = - nF{E^ \odot }$ Where n=moles of electrons from balanced Redox reaction, F is faraday constant whose value is $96458{\text{ C/mol}}$ and ${E^ \odot }$ is the standard cell potential
On putting the given values we get,
$ \Rightarrow \Delta G_1^ \odot = - 2 \times F \times \left( {1.23} \right)$
On solving we get,
$ \Rightarrow \Delta G_1^ \odot = - 2.46F$ --- (i)
Now at Anode:
$F{e^{2 + }} + 2{e^ - } \to Fe\left( s \right);{E^ \odot } = - 044V$
Then n=$2$.Now using formula-
$ \Rightarrow $ $\Delta {G^ \odot } = - nF{E^ \odot }$ Where n=moles of electrons from balanced Redox reaction, F is faraday constant whose value is $96458{\text{ C/mol}}$ and ${E^ \odot }$ is the standard cell potential
On putting the given values we get,
$ \Rightarrow \Delta G_2^ \odot = - 2 \times F \times \left( {0.44} \right)$
On solving we get,
$ \Rightarrow \Delta G_2^ \odot = - 0.88F$ --- (ii)
Now on applying formula
$ \Rightarrow \Delta G_{net}^ \odot = \Delta G_1^ \odot + \Delta G_2^ \odot $
On putting the values from eq. (i) and (ii) in this formula we get,
$ \Rightarrow \Delta G_{net}^ \odot = \left[ { - 2.46F} \right] + \left[ { - 0.88F} \right]$
On simplifying we get,
$ \Rightarrow \Delta G_{net}^ \odot = - 3.34F$
And we know the value of Faraday constant, so on putting the value we get,
$ \Rightarrow \Delta G_{net}^ \odot = - 3.34 \times 96458$${\text{Jmo}}{{\text{l}}^{{\text{ - 1}}}}$
$ \Rightarrow \Delta G_{net}^ \odot = - 322169.72$ ${\text{Jmo}}{{\text{l}}^{{\text{ - 1}}}}$
We know that $1{\text{KJ = 1000J}}$
Then$\Delta G_{net}^ \odot = - 322169.72 \times 1000{\text{ KJmo}}{{\text{l}}^{{\text{ - 1}}}}$
\[ \Rightarrow \Delta G_{net}^ \odot = - 322.169{\text{ KJmo}}{{\text{l}}^{{\text{ - 1}}}}\]
Hence correct option is A.
Note: $\Delta {G^ \odot }$ is Gibbs energy change for a system under standard conditions while $\Delta G$ is Gibbs free energy for a system. $\Delta {G^ \odot }$ is also given as –
$ \Rightarrow \Delta {G^ \odot } = - RT\ln K$
Where $R = 8.314{\text{ Jmol}}{{\text{C}}^{ - 1}}$ is gas constant, T=Temperature and K is equilibrium constant of a reaction.
Gibbs free energy is given as-$\Delta G = \Delta H - T\Delta S$ where $\Delta H$ is change in enthalpy, $\Delta S$ is change in entropy and T is the temperature.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electrical Field of Charged Spherical Shell - JEE

Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

Solutions Class 12 Notes: CBSE Chemistry Chapter 1

NCERT Solutions for Class 12 Chemistry Chapter 7 Alcohol Phenol and Ether
