
The relaxation time in conductors
A. Increase with the increase of temperature
B. Decrease with the increase of temperature
C. It does not depend on temperature
D. All of sudden change at 400 K
Answer
219.3k+ views
Hint: First start with finding the relation between the temperature and relaxation time in case of conductors. Then try to find what changes occur in conductors when the temperature increases or decreases. Whether the relaxation time in case of conductors depends on the temperature or not.
Formula used:
1. Resistance, $R = \rho \dfrac{l}{A}$
Where, $\rho $ is resistivity, A is the area of the given conductor and l is the length of the wire.
2. Relaxation time, $\tau \propto \dfrac{1}{\rho }$
Complete step by step solution:
In the case of a conductor we know that; conductor contains free electrons that help in conduction of electricity. When the temperature of the conductor rises, atoms start vibrating more frequently which causes an increase in the number of collisions of atoms.
Therefore, this increases resistance to the movement of electrons present in the atoms which are colliding. Now, from the formula of resistance we know that;
$R = \rho \dfrac{l}{A}$
Which implies,
$R \propto \rho $
So, both the quantities are directly proportional to each other. It means when temperature increases, resistance increases and hence the resistivity will also increase.
Now we know that, relaxation time is given by:
$\tau \propto \dfrac{1}{\rho }$
As relaxation time and resistivity are inversely proportional to each other as we can see from the formula. Therefore, when resistivity increases then the relaxation time will decrease for conductors for increase in temperature.
Hence, the correct answer is option B.
Note: Here the case of conductors was given so we know that electron density increases in conductors on increase in temperature which causes resistivity increase but it is not the case when semi-conductors or insulators are used in place of the conductors. Relaxation time here depended on temperature.
Formula used:
1. Resistance, $R = \rho \dfrac{l}{A}$
Where, $\rho $ is resistivity, A is the area of the given conductor and l is the length of the wire.
2. Relaxation time, $\tau \propto \dfrac{1}{\rho }$
Complete step by step solution:
In the case of a conductor we know that; conductor contains free electrons that help in conduction of electricity. When the temperature of the conductor rises, atoms start vibrating more frequently which causes an increase in the number of collisions of atoms.
Therefore, this increases resistance to the movement of electrons present in the atoms which are colliding. Now, from the formula of resistance we know that;
$R = \rho \dfrac{l}{A}$
Which implies,
$R \propto \rho $
So, both the quantities are directly proportional to each other. It means when temperature increases, resistance increases and hence the resistivity will also increase.
Now we know that, relaxation time is given by:
$\tau \propto \dfrac{1}{\rho }$
As relaxation time and resistivity are inversely proportional to each other as we can see from the formula. Therefore, when resistivity increases then the relaxation time will decrease for conductors for increase in temperature.
Hence, the correct answer is option B.
Note: Here the case of conductors was given so we know that electron density increases in conductors on increase in temperature which causes resistivity increase but it is not the case when semi-conductors or insulators are used in place of the conductors. Relaxation time here depended on temperature.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction Explained: Definition, Examples & Science for Students

Analytical Method of Vector Addition Explained Simply

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

