
The relationship between solubility of a gas in liquid at constant temperature and external pressure is stated by which law?
(a) Raoult’s law
(b) Van’t Hoff Boyle’s law
(c) Van’t Hoff Charles law
(d) Henry’s law
Answer
232.8k+ views
Hint: Try to recall that the solubility of a gas in a liquid is inversely proportional to the temperature of gas and also the mass of gas dissolved is proportional to the partial pressure of the gas. Now, by using this you can find the correct option from the given options.
Complete step by step solution:
It is known to you that Henry’s law states that “at constant temperature and external pressure, the solubility of a gas in a liquid is directly proportional to the pressure at which it is dissolved.
Let x be the mole fraction of a gas at a given temperature as a measure of its solubility and p be the partial pressure of gas in equilibrium with solution.
By Henry’s law: \[x\alpha p\] or \[p\alpha x\]
\[ \Rightarrow p = {K_H}x\] or \[x = \dfrac{p}{{{K_H}}}\] , where${K_H}$ = Henry law constant.
Therefore, from above we can conclude that option D is the correct option to the given question.
Additional information:
1) There are some limitations of henry’s law which are as follows:
2) The pressure of gas should not be too high.
3) Also, the temperature should not be too low.
4) The gas should not undergo any chemical reaction with solvent.
5) The gas should not undergo dissociation in solution.
Note: It should be remembered to you that higher the value of Henry's law constant $K_H$ , lower will be its solubility.
Also, you should remember that different gas has different values of henry’s law constant $K_H$ for the same solvent.
Complete step by step solution:
It is known to you that Henry’s law states that “at constant temperature and external pressure, the solubility of a gas in a liquid is directly proportional to the pressure at which it is dissolved.
Let x be the mole fraction of a gas at a given temperature as a measure of its solubility and p be the partial pressure of gas in equilibrium with solution.
By Henry’s law: \[x\alpha p\] or \[p\alpha x\]
\[ \Rightarrow p = {K_H}x\] or \[x = \dfrac{p}{{{K_H}}}\] , where${K_H}$ = Henry law constant.
Therefore, from above we can conclude that option D is the correct option to the given question.
Additional information:
1) There are some limitations of henry’s law which are as follows:
2) The pressure of gas should not be too high.
3) Also, the temperature should not be too low.
4) The gas should not undergo any chemical reaction with solvent.
5) The gas should not undergo dissociation in solution.
Note: It should be remembered to you that higher the value of Henry's law constant $K_H$ , lower will be its solubility.
Also, you should remember that different gas has different values of henry’s law constant $K_H$ for the same solvent.
Recently Updated Pages
Types of Solutions in Chemistry: Explained Simply

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 12 Chemistry Chapter 2 Solutions Hindi Medium (2025-26)

AssertionIn electrolytic refining of metal impure metal class 12 chemistry JEE_Main

CBSE Class 12 Chemistry Set 1 56/2/1 2025: Question Paper, Answers & Analysis

