
The rate constant for the reaction \[{{\rm{N}}_2}{{\rm{O}}_5}\left( g \right) \to 2{\rm{N}}{{\rm{O}}_2}\left( g \right) + \dfrac{1}{2}{{\rm{O}}_2}\] is \[2.3 \times {10^{ - 2}}{\rm{ se}}{{\rm{c}}^{ - 1}}\]. Which equation given below describes the change of \[\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]\] with time, \[{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0}\] and \[{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t}\] corresponds to concentration of \[{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}\] initially and time t respectively?
This question has multiple correct options.
( A ) \[{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t}{e^{kt}}\]
( B ) \[\log \dfrac{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_0}}}{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_t}}} = kt\]
( C ) \[{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} + kt\]
( D ) \[{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} + kt\]
Answer
221.1k+ views
Hint: Obtain the order of the reaction from the unit of the rate constant.For the first order reaction, the unit of the rate constant is the reciprocal of time.
Complete step by step answer:
The rate constant for the reaction \[{{\rm{N}}_2}{{\rm{O}}_5}\left( g \right) \to 2{\rm{N}}{{\rm{O}}_2}\left( g \right) + \dfrac{1}{2}{{\rm{O}}_2}\] is \[2.3 \times {10^{ - 2}}{\rm{ se}}{{\rm{c}}^{ - 1}}\].
This suggests that the reaction follows first order kinetics. For the first order reaction, the unit of the rate constant is the reciprocal of time.
For the first order reaction, the rate of the reaction is directly proportional to the first power of the concentration of the reaction.
\[\begin{array}{l}
{\rm{Rate}} \propto \left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]\\
{\rm{Rate}} = k \times \left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]
\end{array}\]
But the rate of the reaction is \[{\rm{Rate}} = - \dfrac{{d\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}}{{dt}}\].
Hence \[{\rm{Rate}} = - \dfrac{{d\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}}{{dt}} = k \times \left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]\] … …(1)
When the above equation is integrated, the following relationship is obtained.
\[\begin{array}{l}
{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0}{e^{ - kt}}\\
{\rm{Rearrange above expression}}\\
{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t}{e^{kt}}
\end{array}\]
This is the same as in option A. Hence, option A is correct.
Upon integration of equation (1), the following reactions are also obtained.
\[\begin{array}{l}
\ln \dfrac{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_0}}}{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_t}}} = kt\\
\log \dfrac{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_0}}}{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_t}}} = \dfrac{{kt}}{{2.303}}
\end{array}\]
Hence, the option B) is incorrect.
Upon integration of equation (1), the following reactions are also obtained.
\[\begin{array}{l}
\ln {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = \ln {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} - kt\\
2.303{\log _{10}}{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = 2.303{\log _{10}}{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} - kt\\
{\log _{10}}{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = {\log _{10}}{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} - \dfrac{{kt}}{{2.303}}
\end{array}\]
Hence, the option C) is incorrect.
The relation \[{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} + kt\] is incorrect as it shows a linear relationship between concentration and time, however, in first order reaction, the concentration shows exponential decay.
Hence, the option C) is incorrect.
Hence, only option A) is the correct option.
Note:
Please take care of positive and negative signs used in the formula. Also remember that when natural logarithm is converted to logarithm to base 10, it is multiplied with 2.303.
Complete step by step answer:
The rate constant for the reaction \[{{\rm{N}}_2}{{\rm{O}}_5}\left( g \right) \to 2{\rm{N}}{{\rm{O}}_2}\left( g \right) + \dfrac{1}{2}{{\rm{O}}_2}\] is \[2.3 \times {10^{ - 2}}{\rm{ se}}{{\rm{c}}^{ - 1}}\].
This suggests that the reaction follows first order kinetics. For the first order reaction, the unit of the rate constant is the reciprocal of time.
For the first order reaction, the rate of the reaction is directly proportional to the first power of the concentration of the reaction.
\[\begin{array}{l}
{\rm{Rate}} \propto \left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]\\
{\rm{Rate}} = k \times \left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]
\end{array}\]
But the rate of the reaction is \[{\rm{Rate}} = - \dfrac{{d\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}}{{dt}}\].
Hence \[{\rm{Rate}} = - \dfrac{{d\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}}{{dt}} = k \times \left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]\] … …(1)
When the above equation is integrated, the following relationship is obtained.
\[\begin{array}{l}
{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0}{e^{ - kt}}\\
{\rm{Rearrange above expression}}\\
{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t}{e^{kt}}
\end{array}\]
This is the same as in option A. Hence, option A is correct.
Upon integration of equation (1), the following reactions are also obtained.
\[\begin{array}{l}
\ln \dfrac{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_0}}}{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_t}}} = kt\\
\log \dfrac{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_0}}}{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_t}}} = \dfrac{{kt}}{{2.303}}
\end{array}\]
Hence, the option B) is incorrect.
Upon integration of equation (1), the following reactions are also obtained.
\[\begin{array}{l}
\ln {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = \ln {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} - kt\\
2.303{\log _{10}}{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = 2.303{\log _{10}}{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} - kt\\
{\log _{10}}{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = {\log _{10}}{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} - \dfrac{{kt}}{{2.303}}
\end{array}\]
Hence, the option C) is incorrect.
The relation \[{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} + kt\] is incorrect as it shows a linear relationship between concentration and time, however, in first order reaction, the concentration shows exponential decay.
Hence, the option C) is incorrect.
Hence, only option A) is the correct option.
Note:
Please take care of positive and negative signs used in the formula. Also remember that when natural logarithm is converted to logarithm to base 10, it is multiplied with 2.303.
Recently Updated Pages
Difference Between Alcohol and Phenol: Structure, Tests & Uses

Classification of Drugs in Chemistry: Types, Examples & Exam Guide

Class 12 Chemistry Mock Test Series for JEE Main – Free Online Practice

Is PPh3 a strong ligand class 12 chemistry JEE_Main

Full name of DDT is A 111trichloro22bispchlorophenyl class 12 chemistry JEE_Main

Sodium acetate on heating with soda lime produce A class 12 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions - 2025-26

The D and F Block Elements Class 12 Chemistry Chapter 4 CBSE Notes - 2025-26

NCERT Solutions for Class 12 Chemistry Chapter Chapter 7 Alcohol Phenol and Ether

NCERT Solutions ForClass 12 Chemistry Chapter Chapter 8 Aldehydes Ketones And Carboxylic Acids

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

