
The rate constant for the reaction \[{{\rm{N}}_2}{{\rm{O}}_5}\left( g \right) \to 2{\rm{N}}{{\rm{O}}_2}\left( g \right) + \dfrac{1}{2}{{\rm{O}}_2}\] is \[2.3 \times {10^{ - 2}}{\rm{ se}}{{\rm{c}}^{ - 1}}\]. Which equation given below describes the change of \[\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]\] with time, \[{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0}\] and \[{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t}\] corresponds to concentration of \[{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}\] initially and time t respectively?
This question has multiple correct options.
( A ) \[{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t}{e^{kt}}\]
( B ) \[\log \dfrac{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_0}}}{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_t}}} = kt\]
( C ) \[{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} + kt\]
( D ) \[{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} + kt\]
Answer
232.8k+ views
Hint: Obtain the order of the reaction from the unit of the rate constant.For the first order reaction, the unit of the rate constant is the reciprocal of time.
Complete step by step answer:
The rate constant for the reaction \[{{\rm{N}}_2}{{\rm{O}}_5}\left( g \right) \to 2{\rm{N}}{{\rm{O}}_2}\left( g \right) + \dfrac{1}{2}{{\rm{O}}_2}\] is \[2.3 \times {10^{ - 2}}{\rm{ se}}{{\rm{c}}^{ - 1}}\].
This suggests that the reaction follows first order kinetics. For the first order reaction, the unit of the rate constant is the reciprocal of time.
For the first order reaction, the rate of the reaction is directly proportional to the first power of the concentration of the reaction.
\[\begin{array}{l}
{\rm{Rate}} \propto \left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]\\
{\rm{Rate}} = k \times \left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]
\end{array}\]
But the rate of the reaction is \[{\rm{Rate}} = - \dfrac{{d\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}}{{dt}}\].
Hence \[{\rm{Rate}} = - \dfrac{{d\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}}{{dt}} = k \times \left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]\] … …(1)
When the above equation is integrated, the following relationship is obtained.
\[\begin{array}{l}
{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0}{e^{ - kt}}\\
{\rm{Rearrange above expression}}\\
{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t}{e^{kt}}
\end{array}\]
This is the same as in option A. Hence, option A is correct.
Upon integration of equation (1), the following reactions are also obtained.
\[\begin{array}{l}
\ln \dfrac{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_0}}}{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_t}}} = kt\\
\log \dfrac{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_0}}}{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_t}}} = \dfrac{{kt}}{{2.303}}
\end{array}\]
Hence, the option B) is incorrect.
Upon integration of equation (1), the following reactions are also obtained.
\[\begin{array}{l}
\ln {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = \ln {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} - kt\\
2.303{\log _{10}}{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = 2.303{\log _{10}}{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} - kt\\
{\log _{10}}{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = {\log _{10}}{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} - \dfrac{{kt}}{{2.303}}
\end{array}\]
Hence, the option C) is incorrect.
The relation \[{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} + kt\] is incorrect as it shows a linear relationship between concentration and time, however, in first order reaction, the concentration shows exponential decay.
Hence, the option C) is incorrect.
Hence, only option A) is the correct option.
Note:
Please take care of positive and negative signs used in the formula. Also remember that when natural logarithm is converted to logarithm to base 10, it is multiplied with 2.303.
Complete step by step answer:
The rate constant for the reaction \[{{\rm{N}}_2}{{\rm{O}}_5}\left( g \right) \to 2{\rm{N}}{{\rm{O}}_2}\left( g \right) + \dfrac{1}{2}{{\rm{O}}_2}\] is \[2.3 \times {10^{ - 2}}{\rm{ se}}{{\rm{c}}^{ - 1}}\].
This suggests that the reaction follows first order kinetics. For the first order reaction, the unit of the rate constant is the reciprocal of time.
For the first order reaction, the rate of the reaction is directly proportional to the first power of the concentration of the reaction.
\[\begin{array}{l}
{\rm{Rate}} \propto \left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]\\
{\rm{Rate}} = k \times \left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]
\end{array}\]
But the rate of the reaction is \[{\rm{Rate}} = - \dfrac{{d\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}}{{dt}}\].
Hence \[{\rm{Rate}} = - \dfrac{{d\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}}{{dt}} = k \times \left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]\] … …(1)
When the above equation is integrated, the following relationship is obtained.
\[\begin{array}{l}
{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0}{e^{ - kt}}\\
{\rm{Rearrange above expression}}\\
{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t}{e^{kt}}
\end{array}\]
This is the same as in option A. Hence, option A is correct.
Upon integration of equation (1), the following reactions are also obtained.
\[\begin{array}{l}
\ln \dfrac{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_0}}}{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_t}}} = kt\\
\log \dfrac{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_0}}}{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_t}}} = \dfrac{{kt}}{{2.303}}
\end{array}\]
Hence, the option B) is incorrect.
Upon integration of equation (1), the following reactions are also obtained.
\[\begin{array}{l}
\ln {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = \ln {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} - kt\\
2.303{\log _{10}}{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = 2.303{\log _{10}}{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} - kt\\
{\log _{10}}{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = {\log _{10}}{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} - \dfrac{{kt}}{{2.303}}
\end{array}\]
Hence, the option C) is incorrect.
The relation \[{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} + kt\] is incorrect as it shows a linear relationship between concentration and time, however, in first order reaction, the concentration shows exponential decay.
Hence, the option C) is incorrect.
Hence, only option A) is the correct option.
Note:
Please take care of positive and negative signs used in the formula. Also remember that when natural logarithm is converted to logarithm to base 10, it is multiplied with 2.303.
Recently Updated Pages
JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions (2025-26)

Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 4 The d and f Block Elements (2025-26)

Biomolecules Class 12 Chemistry Chapter 10 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 10 Biomolecules (2025-26)

