
The rate constant for the reaction \[{{\rm{N}}_2}{{\rm{O}}_5}\left( g \right) \to 2{\rm{N}}{{\rm{O}}_2}\left( g \right) + \dfrac{1}{2}{{\rm{O}}_2}\] is \[2.3 \times {10^{ - 2}}{\rm{ se}}{{\rm{c}}^{ - 1}}\]. Which equation given below describes the change of \[\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]\] with time, \[{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0}\] and \[{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t}\] corresponds to concentration of \[{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}\] initially and time t respectively?
This question has multiple correct options.
( A ) \[{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t}{e^{kt}}\]
( B ) \[\log \dfrac{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_0}}}{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_t}}} = kt\]
( C ) \[{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} + kt\]
( D ) \[{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} + kt\]
Answer
153.9k+ views
Hint: Obtain the order of the reaction from the unit of the rate constant.For the first order reaction, the unit of the rate constant is the reciprocal of time.
Complete step by step answer:
The rate constant for the reaction \[{{\rm{N}}_2}{{\rm{O}}_5}\left( g \right) \to 2{\rm{N}}{{\rm{O}}_2}\left( g \right) + \dfrac{1}{2}{{\rm{O}}_2}\] is \[2.3 \times {10^{ - 2}}{\rm{ se}}{{\rm{c}}^{ - 1}}\].
This suggests that the reaction follows first order kinetics. For the first order reaction, the unit of the rate constant is the reciprocal of time.
For the first order reaction, the rate of the reaction is directly proportional to the first power of the concentration of the reaction.
\[\begin{array}{l}
{\rm{Rate}} \propto \left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]\\
{\rm{Rate}} = k \times \left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]
\end{array}\]
But the rate of the reaction is \[{\rm{Rate}} = - \dfrac{{d\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}}{{dt}}\].
Hence \[{\rm{Rate}} = - \dfrac{{d\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}}{{dt}} = k \times \left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]\] … …(1)
When the above equation is integrated, the following relationship is obtained.
\[\begin{array}{l}
{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0}{e^{ - kt}}\\
{\rm{Rearrange above expression}}\\
{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t}{e^{kt}}
\end{array}\]
This is the same as in option A. Hence, option A is correct.
Upon integration of equation (1), the following reactions are also obtained.
\[\begin{array}{l}
\ln \dfrac{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_0}}}{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_t}}} = kt\\
\log \dfrac{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_0}}}{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_t}}} = \dfrac{{kt}}{{2.303}}
\end{array}\]
Hence, the option B) is incorrect.
Upon integration of equation (1), the following reactions are also obtained.
\[\begin{array}{l}
\ln {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = \ln {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} - kt\\
2.303{\log _{10}}{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = 2.303{\log _{10}}{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} - kt\\
{\log _{10}}{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = {\log _{10}}{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} - \dfrac{{kt}}{{2.303}}
\end{array}\]
Hence, the option C) is incorrect.
The relation \[{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} + kt\] is incorrect as it shows a linear relationship between concentration and time, however, in first order reaction, the concentration shows exponential decay.
Hence, the option C) is incorrect.
Hence, only option A) is the correct option.
Note:
Please take care of positive and negative signs used in the formula. Also remember that when natural logarithm is converted to logarithm to base 10, it is multiplied with 2.303.
Complete step by step answer:
The rate constant for the reaction \[{{\rm{N}}_2}{{\rm{O}}_5}\left( g \right) \to 2{\rm{N}}{{\rm{O}}_2}\left( g \right) + \dfrac{1}{2}{{\rm{O}}_2}\] is \[2.3 \times {10^{ - 2}}{\rm{ se}}{{\rm{c}}^{ - 1}}\].
This suggests that the reaction follows first order kinetics. For the first order reaction, the unit of the rate constant is the reciprocal of time.
For the first order reaction, the rate of the reaction is directly proportional to the first power of the concentration of the reaction.
\[\begin{array}{l}
{\rm{Rate}} \propto \left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]\\
{\rm{Rate}} = k \times \left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]
\end{array}\]
But the rate of the reaction is \[{\rm{Rate}} = - \dfrac{{d\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}}{{dt}}\].
Hence \[{\rm{Rate}} = - \dfrac{{d\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}}{{dt}} = k \times \left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]\] … …(1)
When the above equation is integrated, the following relationship is obtained.
\[\begin{array}{l}
{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0}{e^{ - kt}}\\
{\rm{Rearrange above expression}}\\
{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t}{e^{kt}}
\end{array}\]
This is the same as in option A. Hence, option A is correct.
Upon integration of equation (1), the following reactions are also obtained.
\[\begin{array}{l}
\ln \dfrac{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_0}}}{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_t}}} = kt\\
\log \dfrac{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_0}}}{{{{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]}_t}}} = \dfrac{{kt}}{{2.303}}
\end{array}\]
Hence, the option B) is incorrect.
Upon integration of equation (1), the following reactions are also obtained.
\[\begin{array}{l}
\ln {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = \ln {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} - kt\\
2.303{\log _{10}}{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = 2.303{\log _{10}}{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} - kt\\
{\log _{10}}{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = {\log _{10}}{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} - \dfrac{{kt}}{{2.303}}
\end{array}\]
Hence, the option C) is incorrect.
The relation \[{\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_t} = {\left[ {{{\rm{N}}_{\rm{2}}}{{\rm{O}}_{\rm{5}}}} \right]_0} + kt\] is incorrect as it shows a linear relationship between concentration and time, however, in first order reaction, the concentration shows exponential decay.
Hence, the option C) is incorrect.
Hence, only option A) is the correct option.
Note:
Please take care of positive and negative signs used in the formula. Also remember that when natural logarithm is converted to logarithm to base 10, it is multiplied with 2.303.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

Solutions Class 12 Notes: CBSE Chemistry Chapter 1

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
