Answer
Verified
87.3k+ views
Hint: Recall a formula that incorporates number of moles, volume, pressure, and temperature. Calculate the total number of moles present in the flask to get the number of molecules that will exert pressure.
Complete step by step solution:
The formula that includes all the parameters that are given in the question is the ideal gas equation. The equation is as follows:
\[PV=nRT\]
Where, $P$ is the pressure, $V$ is the volume, $n$ is the number of moles of the substance, $R$ is the universal gas constant, and $T$ is the temperature given
We have all the information required except the number of moles of substance present in the container. The total number of moles will be obtained when the number of moles of each individual substance is added. The formula to calculate the number of moles is as follows:
\[\text{no}\text{. of moles = }\dfrac{\text{given weight}}{\text{molecular weight}}\]
We have the weight of both the substances given to us but we need to calculate the molecular weight. The molecular weight is given by the addition of the atomic weights of all the atoms present in the molecule. So, the molecular weights will be:
- Molecular weight of $C{{H}_{4}}$
\[\begin{align}
& \text{Molecular weight of }C{{H}_{4}}=(1\times \text{atomic weight of }C)+(4\times \text{atomic weight of }H) \\
& \text{Molecular weight of }C{{H}_{4}}=(1\times 12)+(4\times 1) \\
& \text{Molecular weight of }C{{H}_{4}}=16 \\
\end{align}\]
- Molecular weight of $C{{O}_{2}}$
\[\begin{align}
& \text{Molecular weight of }C{{O}_{2}}=(1\times \text{atomic weight of }C)+(2\times \text{atomic weight of }O) \\
& \text{Molecular weight of }C{{O}_{2}}=(1\times 12)+(2\times 16) \\
& \text{Molecular weight of }C{{O}_{2}}=44 \\
\end{align}\]
Now, we will calculate the number of moles of each substance present.
- Moles of methane
\[\begin{align}
& \text{No}\text{. of moles of }C{{H}_{4}}\text{ = }\dfrac{3.2}{16} \\
& \text{No}\text{. of moles of }C{{H}_{4}}\text{ = }0.2 \\
\end{align}\]
- Moles of carbon dioxide
\[\begin{align}
& \text{No}\text{. of moles of }C{{O}_{2}}=\dfrac{4.4}{44} \\
& \text{No}\text{. of moles of }C{{O}_{2}}=0.1 \\
\end{align}\]
- Total number of moles present
\[\begin{align}
& \text{Total no}\text{. of moles = no}\text{.of moles of }C{{H}_{4}}+\text{no}\text{. of moles of }C{{O}_{2}} \\
& \text{Total no}\text{. of moles = }0.2+0.1 \\
& \text{Total no}\text{. of moles = }0.3 \\
\end{align}\]
So, now we have the values:
V = $9d{{m}^{3}}=9\times {{10}^{-3}}{{m}^{3}}$
R = $8.314J{{K}^{-1}}mo{{l}^{-1}}$
n = $0.3mol$
T = $27{}^\circ C=300K$
Now, we will put these values in the ideal gas equation and solve for pressure.
\[\begin{align}
& PV=nRT \\
& P=\dfrac{nRT}{V} \\
& P=\dfrac{0.3\times 8.314\times 300}{9\times {{10}^{-3}}} \\
& P=83.14\times {{10}^{3}} \\
& P=8.314\times {{10}^{4}}Pa \\
\end{align}\]
Hence, the pressure exerted by both the gases is $8.314\times {{10}^{4}}Pa$
Additional information:
We can solve this problem without converting all the units to the SI units too. But make sure the value for R that you are taking is appropriate for the units of all the other values.
Note: The pressure is directly proportional to the number of molecules that are present in the container, an estimate of how many molecules are present in the container will be given by the total number of moles present in the container.
Complete step by step solution:
The formula that includes all the parameters that are given in the question is the ideal gas equation. The equation is as follows:
\[PV=nRT\]
Where, $P$ is the pressure, $V$ is the volume, $n$ is the number of moles of the substance, $R$ is the universal gas constant, and $T$ is the temperature given
We have all the information required except the number of moles of substance present in the container. The total number of moles will be obtained when the number of moles of each individual substance is added. The formula to calculate the number of moles is as follows:
\[\text{no}\text{. of moles = }\dfrac{\text{given weight}}{\text{molecular weight}}\]
We have the weight of both the substances given to us but we need to calculate the molecular weight. The molecular weight is given by the addition of the atomic weights of all the atoms present in the molecule. So, the molecular weights will be:
- Molecular weight of $C{{H}_{4}}$
\[\begin{align}
& \text{Molecular weight of }C{{H}_{4}}=(1\times \text{atomic weight of }C)+(4\times \text{atomic weight of }H) \\
& \text{Molecular weight of }C{{H}_{4}}=(1\times 12)+(4\times 1) \\
& \text{Molecular weight of }C{{H}_{4}}=16 \\
\end{align}\]
- Molecular weight of $C{{O}_{2}}$
\[\begin{align}
& \text{Molecular weight of }C{{O}_{2}}=(1\times \text{atomic weight of }C)+(2\times \text{atomic weight of }O) \\
& \text{Molecular weight of }C{{O}_{2}}=(1\times 12)+(2\times 16) \\
& \text{Molecular weight of }C{{O}_{2}}=44 \\
\end{align}\]
Now, we will calculate the number of moles of each substance present.
- Moles of methane
\[\begin{align}
& \text{No}\text{. of moles of }C{{H}_{4}}\text{ = }\dfrac{3.2}{16} \\
& \text{No}\text{. of moles of }C{{H}_{4}}\text{ = }0.2 \\
\end{align}\]
- Moles of carbon dioxide
\[\begin{align}
& \text{No}\text{. of moles of }C{{O}_{2}}=\dfrac{4.4}{44} \\
& \text{No}\text{. of moles of }C{{O}_{2}}=0.1 \\
\end{align}\]
- Total number of moles present
\[\begin{align}
& \text{Total no}\text{. of moles = no}\text{.of moles of }C{{H}_{4}}+\text{no}\text{. of moles of }C{{O}_{2}} \\
& \text{Total no}\text{. of moles = }0.2+0.1 \\
& \text{Total no}\text{. of moles = }0.3 \\
\end{align}\]
So, now we have the values:
V = $9d{{m}^{3}}=9\times {{10}^{-3}}{{m}^{3}}$
R = $8.314J{{K}^{-1}}mo{{l}^{-1}}$
n = $0.3mol$
T = $27{}^\circ C=300K$
Now, we will put these values in the ideal gas equation and solve for pressure.
\[\begin{align}
& PV=nRT \\
& P=\dfrac{nRT}{V} \\
& P=\dfrac{0.3\times 8.314\times 300}{9\times {{10}^{-3}}} \\
& P=83.14\times {{10}^{3}} \\
& P=8.314\times {{10}^{4}}Pa \\
\end{align}\]
Hence, the pressure exerted by both the gases is $8.314\times {{10}^{4}}Pa$
Additional information:
We can solve this problem without converting all the units to the SI units too. But make sure the value for R that you are taking is appropriate for the units of all the other values.
Note: The pressure is directly proportional to the number of molecules that are present in the container, an estimate of how many molecules are present in the container will be given by the total number of moles present in the container.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
If temperature of sun is decreased by 1 then the value class 11 physics JEE_Main
If the length of the pendulum is made 9 times and mass class 11 physics JEE_Main
Derive an expression for maximum speed of a car on class 11 physics JEE_Main
Find the number of nitrates which gives NO2gas on heating class 12 chemistry JEE_Main
Which of the following facts regarding bond order is class 11 chemistry JEE_Main
A rod of length 2m rests on a smooth horizontal floor class 11 physics JEE_Main