
The position vector of a particle varies with time as $\overrightarrow r = \overrightarrow {{r_0}} t(1 - \alpha t)$where $\overrightarrow {{r_0}} $ is a constant vector and $\alpha $ is a positive constant. The distance travelled by particle in a time interval in which particle returns to its initial position is $\dfrac{{K{r_0}}}{{16\alpha }}$. Determine the value of K?
Answer
216.6k+ views
Hint From the position vector we can conclude that the particle moves in a straight line and also it is mentioned that there will be two instances of time when the particle will be at the initial position. We can use this concept to calculate the distance and compare it to get K
Formula used:
$S = ut + \dfrac{1}{2}a{t^2}$
Complete step by step answer:
The position vector which is varying with time is given in the question, this time varying position vector can be treated as displacement vector $\overrightarrow r = \overrightarrow {{r_0}} t(1 - \alpha t)$at $t = 0$, r will be zero. Since it is given that the particle returns to its initial position it means that the displacement is zero and there will be two values of t for which displacement is zero. They are
$ \Rightarrow {r_0}t(1 - \alpha t) = 0 \Rightarrow t = 0,\dfrac{1}{\alpha }$
To calculate the distance, we first need to calculate velocity, $v = \dfrac{{dr}}{{dt}} = \dfrac{{d\left[ {{r_0}(t - \alpha {t^2})} \right]}}{{dt}} = {r_0}(t - 2\alpha t)$
When a particle has zero displacement and travels some distance, at the point where the particle changes direction velocity is zero which is at half of the distance travelled. The time at which the velocity will be zero is $0 = {r_0}(t - 2\alpha t) \Rightarrow t = \dfrac{1}{{2\alpha }}$
Let the acceleration of particle be a
then $a = \dfrac{{dv}}{{dt}} = - 2\alpha {r_0}$
at initial point t=0, putting it in velocity equation we get initial velocity $u = {r_0}$and the point where velocity is zero, $t = \dfrac{1}{{2\alpha }}$
now using equation of motion $S = ut + \dfrac{1}{2}a{t^2}$where S is the distance travelled by a particle with initial velocity u and acceleration a in time t
let us assume that the particle travels x distance then, $x = {r_0} \times \dfrac{1}{{2\alpha }} + \dfrac{1}{2} \times ( - 2\alpha {r_0}) \times {\left( {\dfrac{1}{{2\alpha }}} \right)^2} \Rightarrow x = \dfrac{{{r_0}}}{{4\alpha }}$
the total distance travelled will be $2 \times \dfrac{{{r_0}}}{{4\alpha }}$,comparing this with the value given in question $\dfrac{{K{r_0}}}{{16\alpha }}$
$ \Rightarrow K = 8$
Hence the value of K is 8.
Note:
The particle was moving in the positive x- direction. The negative sign on acceleration indicates that it is retarding in nature. This means that the velocity of the body in motion is gradually decreasing with time.
Formula used:
$S = ut + \dfrac{1}{2}a{t^2}$
Complete step by step answer:
The position vector which is varying with time is given in the question, this time varying position vector can be treated as displacement vector $\overrightarrow r = \overrightarrow {{r_0}} t(1 - \alpha t)$at $t = 0$, r will be zero. Since it is given that the particle returns to its initial position it means that the displacement is zero and there will be two values of t for which displacement is zero. They are
$ \Rightarrow {r_0}t(1 - \alpha t) = 0 \Rightarrow t = 0,\dfrac{1}{\alpha }$
To calculate the distance, we first need to calculate velocity, $v = \dfrac{{dr}}{{dt}} = \dfrac{{d\left[ {{r_0}(t - \alpha {t^2})} \right]}}{{dt}} = {r_0}(t - 2\alpha t)$
When a particle has zero displacement and travels some distance, at the point where the particle changes direction velocity is zero which is at half of the distance travelled. The time at which the velocity will be zero is $0 = {r_0}(t - 2\alpha t) \Rightarrow t = \dfrac{1}{{2\alpha }}$
Let the acceleration of particle be a
then $a = \dfrac{{dv}}{{dt}} = - 2\alpha {r_0}$
at initial point t=0, putting it in velocity equation we get initial velocity $u = {r_0}$and the point where velocity is zero, $t = \dfrac{1}{{2\alpha }}$
now using equation of motion $S = ut + \dfrac{1}{2}a{t^2}$where S is the distance travelled by a particle with initial velocity u and acceleration a in time t
let us assume that the particle travels x distance then, $x = {r_0} \times \dfrac{1}{{2\alpha }} + \dfrac{1}{2} \times ( - 2\alpha {r_0}) \times {\left( {\dfrac{1}{{2\alpha }}} \right)^2} \Rightarrow x = \dfrac{{{r_0}}}{{4\alpha }}$
the total distance travelled will be $2 \times \dfrac{{{r_0}}}{{4\alpha }}$,comparing this with the value given in question $\dfrac{{K{r_0}}}{{16\alpha }}$
$ \Rightarrow K = 8$
Hence the value of K is 8.
Note:
The particle was moving in the positive x- direction. The negative sign on acceleration indicates that it is retarding in nature. This means that the velocity of the body in motion is gradually decreasing with time.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

