
The plane through the intersection of the planes $x+y+z-1=0$ and $2x+3y-z+4=0$ and parallel to the y-axis passes through the point.
(a) $\left( -3,0,1 \right)$
(b) $\left( 3,3,-1 \right)$
(c) $\left( 3,2,1 \right)$
(d) $\left( -3,1,1 \right)$
Answer
145.5k+ views
Hint: Consider a general plane ${{P}_{1}}+\lambda {{P}_{2}}=0$ passing through the point of intersection of the plane ${{P}_{1}}=x+y+z-1$ and ${{P}_{2}}=2x+3y-z+4$ . Now we know that for a general plane ax+by+cz+d=0, $a\widehat{i}+b\widehat{j}+c\widehat{k}$ represents the vector normal to the given plane and it is given that the plane is parallel to y-axis, so the dot product of the normal vector of the plane in terms of $\lambda $ and vector $\widehat{j}$ is equal to zero. So, using this find the plane and put the options to get the answer.
Complete step-by-step answer:
Let us start by considering the unknown plane to be ${{P}_{1}}+\lambda {{P}_{2}}=0$ , where ${{P}_{1}}=x+y+z-1$ and ${{P}_{2}}=2x+3y-z+4$ . We are allowed to do so as it is given that the plane pass through the intersection of the planes ${{P}_{1}}=x+y+z-1$ and ${{P}_{2}}=2x+3y-z+4$ .
So, the plane comes out to be:
${{P}_{1}}+\lambda {{P}_{2}}=0$
$\Rightarrow x+y+z-1+\lambda \left( 2x+3y-z+4 \right)=0$
\[\Rightarrow \left( 2\lambda +1 \right)x+\left( 3\lambda +1 \right)y+\left( 1-\lambda \right)z-1+4\lambda =0\]
Now we know that for a general plane ax+by+cz+d=0, $a\widehat{i}+b\widehat{j}+c\widehat{k}$ represents the vector normal to the given plane.
Therefore $\left( 2\lambda +1 \right)\widehat{i}+\left( 3\lambda +1 \right)\widehat{j}+\left( 1-\lambda \right)\widehat{k}$ is normal to \[\left( 2\lambda +1 \right)x+\left( 3\lambda +1 \right)y+\left( 1-\lambda \right)z-1+4\lambda =0\] . Also, it is given that the y-axis, i.e., $\widehat{j}$ is parallel to the plane, hence, normal to $\left( 2\lambda +1 \right)\widehat{i}+\left( 3\lambda +1 \right)\widehat{j}+\left( 1-\lambda \right)\widehat{k}$ vector, and we know that the dot product of two normal vectors is equal to zero.
$\begin{align}
& \left( \left( 2\lambda +1 \right)\widehat{i}+\left( 3\lambda +1 \right)\widehat{j}+\left( 1-\lambda \right)\widehat{k} \right).\widehat{j}=0 \\
& \Rightarrow 3\lambda +1=0 \\
& \Rightarrow \lambda =\dfrac{-1}{3} \\
\end{align}$
Now, if we put this value in the equation of plane, we get the equation of plane to be:
\[\left( 2\lambda +1 \right)x+\left( 3\lambda +1 \right)y+\left( 1-\lambda \right)z-1+4\lambda =0\]
\[\begin{align}
& \Rightarrow \left( 2\times \left( \dfrac{-1}{3} \right)+1 \right)x+\left( 3\times \left( \dfrac{-1}{3} \right)+1 \right)y+\left( 1-\left( \dfrac{-1}{3} \right) \right)z-1+4\times \left( \dfrac{-1}{3} \right)=0 \\
& \Rightarrow \dfrac{1}{3}x+0y+\dfrac{4}{3}z-\dfrac{7}{3}=0 \\
& \Rightarrow x+4z-7=0 \\
\end{align}\]
Now let us put the options one-by-one in the equation of the plane to get the answer. Let us start with $\left( -3,0,1 \right)$ .
\[\begin{align}
& -3+4\times 1-7\ne 0 \\
& \Rightarrow -6\ne 0 \\
\end{align}\]
So, the equation is not satisfied. Now let us check for $\left( 3,3,-1 \right)$ .
\[\begin{align}
& 3+4\times \left( -1 \right)-7\ne 0 \\
& \Rightarrow -8\ne 0 \\
\end{align}\]
This is also not satisfying the equation. Now let us check for $\left( 3,2,1 \right)$ .
\[\begin{align}
& 3+4\times 1-7=0 \\
& \Rightarrow 0=0 \\
\end{align}\]
So, the equation is satisfied for $\left( 3,2,1 \right)$ . Hence, the answer is option (c).
Note: Be careful and don’t confuse the statement that the plane passes through the point of intersection with the statement that the plane bisects the two given plane and directly use the formula of bisector plane of two given planes, i.e. $\dfrac{{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}=\pm
\dfrac{{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}}{\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$ .
Also, try to keep the equations as simple as possible to reduce the chances of making errors.
Complete step-by-step answer:
Let us start by considering the unknown plane to be ${{P}_{1}}+\lambda {{P}_{2}}=0$ , where ${{P}_{1}}=x+y+z-1$ and ${{P}_{2}}=2x+3y-z+4$ . We are allowed to do so as it is given that the plane pass through the intersection of the planes ${{P}_{1}}=x+y+z-1$ and ${{P}_{2}}=2x+3y-z+4$ .
So, the plane comes out to be:
${{P}_{1}}+\lambda {{P}_{2}}=0$
$\Rightarrow x+y+z-1+\lambda \left( 2x+3y-z+4 \right)=0$
\[\Rightarrow \left( 2\lambda +1 \right)x+\left( 3\lambda +1 \right)y+\left( 1-\lambda \right)z-1+4\lambda =0\]
Now we know that for a general plane ax+by+cz+d=0, $a\widehat{i}+b\widehat{j}+c\widehat{k}$ represents the vector normal to the given plane.
Therefore $\left( 2\lambda +1 \right)\widehat{i}+\left( 3\lambda +1 \right)\widehat{j}+\left( 1-\lambda \right)\widehat{k}$ is normal to \[\left( 2\lambda +1 \right)x+\left( 3\lambda +1 \right)y+\left( 1-\lambda \right)z-1+4\lambda =0\] . Also, it is given that the y-axis, i.e., $\widehat{j}$ is parallel to the plane, hence, normal to $\left( 2\lambda +1 \right)\widehat{i}+\left( 3\lambda +1 \right)\widehat{j}+\left( 1-\lambda \right)\widehat{k}$ vector, and we know that the dot product of two normal vectors is equal to zero.
$\begin{align}
& \left( \left( 2\lambda +1 \right)\widehat{i}+\left( 3\lambda +1 \right)\widehat{j}+\left( 1-\lambda \right)\widehat{k} \right).\widehat{j}=0 \\
& \Rightarrow 3\lambda +1=0 \\
& \Rightarrow \lambda =\dfrac{-1}{3} \\
\end{align}$
Now, if we put this value in the equation of plane, we get the equation of plane to be:
\[\left( 2\lambda +1 \right)x+\left( 3\lambda +1 \right)y+\left( 1-\lambda \right)z-1+4\lambda =0\]
\[\begin{align}
& \Rightarrow \left( 2\times \left( \dfrac{-1}{3} \right)+1 \right)x+\left( 3\times \left( \dfrac{-1}{3} \right)+1 \right)y+\left( 1-\left( \dfrac{-1}{3} \right) \right)z-1+4\times \left( \dfrac{-1}{3} \right)=0 \\
& \Rightarrow \dfrac{1}{3}x+0y+\dfrac{4}{3}z-\dfrac{7}{3}=0 \\
& \Rightarrow x+4z-7=0 \\
\end{align}\]
Now let us put the options one-by-one in the equation of the plane to get the answer. Let us start with $\left( -3,0,1 \right)$ .
\[\begin{align}
& -3+4\times 1-7\ne 0 \\
& \Rightarrow -6\ne 0 \\
\end{align}\]
So, the equation is not satisfied. Now let us check for $\left( 3,3,-1 \right)$ .
\[\begin{align}
& 3+4\times \left( -1 \right)-7\ne 0 \\
& \Rightarrow -8\ne 0 \\
\end{align}\]
This is also not satisfying the equation. Now let us check for $\left( 3,2,1 \right)$ .
\[\begin{align}
& 3+4\times 1-7=0 \\
& \Rightarrow 0=0 \\
\end{align}\]
So, the equation is satisfied for $\left( 3,2,1 \right)$ . Hence, the answer is option (c).
Note: Be careful and don’t confuse the statement that the plane passes through the point of intersection with the statement that the plane bisects the two given plane and directly use the formula of bisector plane of two given planes, i.e. $\dfrac{{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}=\pm
\dfrac{{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}}{\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$ .
Also, try to keep the equations as simple as possible to reduce the chances of making errors.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Central Angle of a Circle Formula - Definition, Theorem and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Boyles Law Formula - Boyles Law Equation | Examples & Definitions

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Ideal and Non-Ideal Solutions Raoult's Law - JEE

Electrical Field of Charged Spherical Shell - JEE

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
