
The plane through the intersection of the planes $x+y+z-1=0$ and $2x+3y-z+4=0$ and parallel to the y-axis passes through the point.
(a) $\left( -3,0,1 \right)$
(b) $\left( 3,3,-1 \right)$
(c) $\left( 3,2,1 \right)$
(d) $\left( -3,1,1 \right)$
Answer
217.5k+ views
Hint: Consider a general plane ${{P}_{1}}+\lambda {{P}_{2}}=0$ passing through the point of intersection of the plane ${{P}_{1}}=x+y+z-1$ and ${{P}_{2}}=2x+3y-z+4$ . Now we know that for a general plane ax+by+cz+d=0, $a\widehat{i}+b\widehat{j}+c\widehat{k}$ represents the vector normal to the given plane and it is given that the plane is parallel to y-axis, so the dot product of the normal vector of the plane in terms of $\lambda $ and vector $\widehat{j}$ is equal to zero. So, using this find the plane and put the options to get the answer.
Complete step-by-step answer:
Let us start by considering the unknown plane to be ${{P}_{1}}+\lambda {{P}_{2}}=0$ , where ${{P}_{1}}=x+y+z-1$ and ${{P}_{2}}=2x+3y-z+4$ . We are allowed to do so as it is given that the plane pass through the intersection of the planes ${{P}_{1}}=x+y+z-1$ and ${{P}_{2}}=2x+3y-z+4$ .
So, the plane comes out to be:
${{P}_{1}}+\lambda {{P}_{2}}=0$
$\Rightarrow x+y+z-1+\lambda \left( 2x+3y-z+4 \right)=0$
\[\Rightarrow \left( 2\lambda +1 \right)x+\left( 3\lambda +1 \right)y+\left( 1-\lambda \right)z-1+4\lambda =0\]
Now we know that for a general plane ax+by+cz+d=0, $a\widehat{i}+b\widehat{j}+c\widehat{k}$ represents the vector normal to the given plane.
Therefore $\left( 2\lambda +1 \right)\widehat{i}+\left( 3\lambda +1 \right)\widehat{j}+\left( 1-\lambda \right)\widehat{k}$ is normal to \[\left( 2\lambda +1 \right)x+\left( 3\lambda +1 \right)y+\left( 1-\lambda \right)z-1+4\lambda =0\] . Also, it is given that the y-axis, i.e., $\widehat{j}$ is parallel to the plane, hence, normal to $\left( 2\lambda +1 \right)\widehat{i}+\left( 3\lambda +1 \right)\widehat{j}+\left( 1-\lambda \right)\widehat{k}$ vector, and we know that the dot product of two normal vectors is equal to zero.
$\begin{align}
& \left( \left( 2\lambda +1 \right)\widehat{i}+\left( 3\lambda +1 \right)\widehat{j}+\left( 1-\lambda \right)\widehat{k} \right).\widehat{j}=0 \\
& \Rightarrow 3\lambda +1=0 \\
& \Rightarrow \lambda =\dfrac{-1}{3} \\
\end{align}$
Now, if we put this value in the equation of plane, we get the equation of plane to be:
\[\left( 2\lambda +1 \right)x+\left( 3\lambda +1 \right)y+\left( 1-\lambda \right)z-1+4\lambda =0\]
\[\begin{align}
& \Rightarrow \left( 2\times \left( \dfrac{-1}{3} \right)+1 \right)x+\left( 3\times \left( \dfrac{-1}{3} \right)+1 \right)y+\left( 1-\left( \dfrac{-1}{3} \right) \right)z-1+4\times \left( \dfrac{-1}{3} \right)=0 \\
& \Rightarrow \dfrac{1}{3}x+0y+\dfrac{4}{3}z-\dfrac{7}{3}=0 \\
& \Rightarrow x+4z-7=0 \\
\end{align}\]
Now let us put the options one-by-one in the equation of the plane to get the answer. Let us start with $\left( -3,0,1 \right)$ .
\[\begin{align}
& -3+4\times 1-7\ne 0 \\
& \Rightarrow -6\ne 0 \\
\end{align}\]
So, the equation is not satisfied. Now let us check for $\left( 3,3,-1 \right)$ .
\[\begin{align}
& 3+4\times \left( -1 \right)-7\ne 0 \\
& \Rightarrow -8\ne 0 \\
\end{align}\]
This is also not satisfying the equation. Now let us check for $\left( 3,2,1 \right)$ .
\[\begin{align}
& 3+4\times 1-7=0 \\
& \Rightarrow 0=0 \\
\end{align}\]
So, the equation is satisfied for $\left( 3,2,1 \right)$ . Hence, the answer is option (c).
Note: Be careful and don’t confuse the statement that the plane passes through the point of intersection with the statement that the plane bisects the two given plane and directly use the formula of bisector plane of two given planes, i.e. $\dfrac{{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}=\pm
\dfrac{{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}}{\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$ .
Also, try to keep the equations as simple as possible to reduce the chances of making errors.
Complete step-by-step answer:
Let us start by considering the unknown plane to be ${{P}_{1}}+\lambda {{P}_{2}}=0$ , where ${{P}_{1}}=x+y+z-1$ and ${{P}_{2}}=2x+3y-z+4$ . We are allowed to do so as it is given that the plane pass through the intersection of the planes ${{P}_{1}}=x+y+z-1$ and ${{P}_{2}}=2x+3y-z+4$ .
So, the plane comes out to be:
${{P}_{1}}+\lambda {{P}_{2}}=0$
$\Rightarrow x+y+z-1+\lambda \left( 2x+3y-z+4 \right)=0$
\[\Rightarrow \left( 2\lambda +1 \right)x+\left( 3\lambda +1 \right)y+\left( 1-\lambda \right)z-1+4\lambda =0\]
Now we know that for a general plane ax+by+cz+d=0, $a\widehat{i}+b\widehat{j}+c\widehat{k}$ represents the vector normal to the given plane.
Therefore $\left( 2\lambda +1 \right)\widehat{i}+\left( 3\lambda +1 \right)\widehat{j}+\left( 1-\lambda \right)\widehat{k}$ is normal to \[\left( 2\lambda +1 \right)x+\left( 3\lambda +1 \right)y+\left( 1-\lambda \right)z-1+4\lambda =0\] . Also, it is given that the y-axis, i.e., $\widehat{j}$ is parallel to the plane, hence, normal to $\left( 2\lambda +1 \right)\widehat{i}+\left( 3\lambda +1 \right)\widehat{j}+\left( 1-\lambda \right)\widehat{k}$ vector, and we know that the dot product of two normal vectors is equal to zero.
$\begin{align}
& \left( \left( 2\lambda +1 \right)\widehat{i}+\left( 3\lambda +1 \right)\widehat{j}+\left( 1-\lambda \right)\widehat{k} \right).\widehat{j}=0 \\
& \Rightarrow 3\lambda +1=0 \\
& \Rightarrow \lambda =\dfrac{-1}{3} \\
\end{align}$
Now, if we put this value in the equation of plane, we get the equation of plane to be:
\[\left( 2\lambda +1 \right)x+\left( 3\lambda +1 \right)y+\left( 1-\lambda \right)z-1+4\lambda =0\]
\[\begin{align}
& \Rightarrow \left( 2\times \left( \dfrac{-1}{3} \right)+1 \right)x+\left( 3\times \left( \dfrac{-1}{3} \right)+1 \right)y+\left( 1-\left( \dfrac{-1}{3} \right) \right)z-1+4\times \left( \dfrac{-1}{3} \right)=0 \\
& \Rightarrow \dfrac{1}{3}x+0y+\dfrac{4}{3}z-\dfrac{7}{3}=0 \\
& \Rightarrow x+4z-7=0 \\
\end{align}\]
Now let us put the options one-by-one in the equation of the plane to get the answer. Let us start with $\left( -3,0,1 \right)$ .
\[\begin{align}
& -3+4\times 1-7\ne 0 \\
& \Rightarrow -6\ne 0 \\
\end{align}\]
So, the equation is not satisfied. Now let us check for $\left( 3,3,-1 \right)$ .
\[\begin{align}
& 3+4\times \left( -1 \right)-7\ne 0 \\
& \Rightarrow -8\ne 0 \\
\end{align}\]
This is also not satisfying the equation. Now let us check for $\left( 3,2,1 \right)$ .
\[\begin{align}
& 3+4\times 1-7=0 \\
& \Rightarrow 0=0 \\
\end{align}\]
So, the equation is satisfied for $\left( 3,2,1 \right)$ . Hence, the answer is option (c).
Note: Be careful and don’t confuse the statement that the plane passes through the point of intersection with the statement that the plane bisects the two given plane and directly use the formula of bisector plane of two given planes, i.e. $\dfrac{{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}z+{{d}_{1}}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}=\pm
\dfrac{{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}z+{{d}_{2}}}{\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$ .
Also, try to keep the equations as simple as possible to reduce the chances of making errors.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

