
The particle executing simple harmonic motion has a kinetic energy of \[{K_0}co{s^2}\omega t\]. The maximum values of the potential energy and the total energy are respectively
A) ${K_0}$ and ${K_0}$
B) 0 and ${K_0}$
C) ${K_0}/2$ and ${K_0}$
D) ${K_0}$ and $2{K_0}$
Answer
216k+ views
Hint: The law of conservation of energy states that the total energy of the system will remain constant. For simple harmonic motion, the kinetic energy and the potential energy exchange into each other depending on the displacement of the particle from the mean position.
Complete step by step answer:
We’ve been given that the particle executing an SHM has a kinetic energy of \[{K_0}co{s^2}\omega t\]. The maximum value of the kinetic energy of the SHM will hence correspond to $\theta = 0^\circ $ which will be
$E = {K_0}$. The particle will have maximum kinetic energy when it is passing through the mean position of the oscillation.
At this position, the particle will only have kinetic energy and no potential energy since the particle is at the mean position. Hence the total energy of the particle will be due to kinetic energy only and it will be ${K_0}$.
The total energy of the particle will remain constant due to the law of conservation of energy. Hence the maximum value of the total energy will be ${K_0}$ and will stay constant in the entire motion of the SHM.
The potential energy of the particle will be maximum when the particle is at a distance equal to the amplitude of the SHM from the mean position. At this point, the total energy of the SHM will only be due to potential energy. So, the maximum potential energy at this point will also be ${K_0}$ as the total energy will all be due to potential energy.
Hence option (A) is the correct choice.
Note: Here we must remember that the total energy of the system should remain constant. Then the fact that the energy of the Simple harmonic oscillator only interchanges its energy completely into one form to another will help us in answering the question.
Complete step by step answer:
We’ve been given that the particle executing an SHM has a kinetic energy of \[{K_0}co{s^2}\omega t\]. The maximum value of the kinetic energy of the SHM will hence correspond to $\theta = 0^\circ $ which will be
$E = {K_0}$. The particle will have maximum kinetic energy when it is passing through the mean position of the oscillation.
At this position, the particle will only have kinetic energy and no potential energy since the particle is at the mean position. Hence the total energy of the particle will be due to kinetic energy only and it will be ${K_0}$.
The total energy of the particle will remain constant due to the law of conservation of energy. Hence the maximum value of the total energy will be ${K_0}$ and will stay constant in the entire motion of the SHM.
The potential energy of the particle will be maximum when the particle is at a distance equal to the amplitude of the SHM from the mean position. At this point, the total energy of the SHM will only be due to potential energy. So, the maximum potential energy at this point will also be ${K_0}$ as the total energy will all be due to potential energy.
Hence option (A) is the correct choice.
Note: Here we must remember that the total energy of the system should remain constant. Then the fact that the energy of the Simple harmonic oscillator only interchanges its energy completely into one form to another will help us in answering the question.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Geostationary and Geosynchronous Satellites Explained

Other Pages
Inertial and Non-Inertial Frame of Reference Explained

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Current Loop as a Magnetic Dipole: Concept, Derivation, and Examples

Two identical balls are projected one vertically up class 11 physics JEE_MAIN

NCERT Solutions For Class 11 Physics Chapter 13 Oscillations - 2025-26

