
The only value of \[x\] for which \[{2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}\] holds, is
A. \[\dfrac{{5\pi }}{4}\]
B. \[\dfrac{{3\pi }}{4}\]
C. \[\dfrac{\pi }{2}\]
D. All values of \[x\].
Answer
162.6k+ views
Hint: Use Arithmetic mean\[(AM) \ge \] Geometric mean\[(GM)\]between\[{2^{\sin x}}\]and\[{2^{\cos x}}\]. Here we have to find the minimum value of\[{2^{\sin x}} + {2^{\cos x}}\]. We know that, Arithmetic means\[ \ge \]Geometric means or, \[AM \ge GM\]. The maximum value can reach up to infinity. Now, using the formulas above, it is possible to determine the minimum and maximum values of various trigonometric functions. But keep in mind that we must first infer as much of the equation as we can.
Complete step by step solution:Given the equation,
\[{2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}\]
For any two values, say\[a\]and\[b\],
\[AM = \dfrac{{a + b}}{2}\]
And \[GM = \sqrt {ab} \]
Considering
\[a = {2^{\sin x}}\]and\[b = {2^{\cos x}}\]
We get:
\[AM = \dfrac{{{2^{\sin x}} + {2^{\cos x}}}}{2}\]
Since\[AM \ge GM\],
We have
\[\dfrac{1}{2}\left( {{2^{\sin x}} + {2^{\cos x}}} \right) \ge \sqrt {{2^{\sin x}} \cdot {2^{\cos x}}} \]
After solving, it becomes:
\[ \Rightarrow {2^{\sin x}} + {2^{\cos x}} \ge 2 \cdot {2^{\dfrac{{\sin x + \cos x}}{2}}}\]
Simplify:
\[ \Rightarrow {2^{\sin x}} + {2^{\cos x}} \ge {2^{1 + \dfrac{{\sin x + \cos x}}{2}}}\]
And, we know that;
\[\sin x + \cos x \ge - \sqrt 2 \].
Therefore,
\[{2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}\]
For:
\[x = \dfrac{{5\pi }}{4}\]
The expression\[M = A + \left| B \right|\]is the function's maximum value. This maximum value is reached whenever sin x or cos x are equal to 1. The expression \[m = A - \left| B \right|\]is the function's minimal value. When there is\[cosx = 1\]or\[sinx = 1\], this minimum is reached.
Hence, \[{2^{\sin x}} + {2^{\cos x}}\]is always greater than or equal to
\[{2^{\left( {1 - \dfrac{1}{{\sqrt 2 }}} \right)}}\]
That means, the minimum value of\[{2^{\sin x}} + {2^{\cos x}}\] is
\[2\left( {1 - \dfrac{1}{{\sqrt 2 }}} \right)\]
Hence, the only value of \[x\] for which\[{2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}\]holds, is
\[x = \dfrac{{5\pi }}{4}\]
Option ‘A’ is correct
Note: In trigonometry, questions involving minima and maxima it is a must try to use the technique of\[AM \ge GM\]sometimes. Do not always try to solve the question only through trigonometric equations and functions. You do not have to learn this formula, just observe here that if the equation is of type\[a{\sin ^2}\phi + b{\cos ^2}\phi a{\sin ^2}\phi + b{\cos ^2}\phi \], no matter what, the maximum value is the larger of values \[(a,b)\]and minimum value is smaller of values\[(a,b)\].
Complete step by step solution:Given the equation,
\[{2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}\]
For any two values, say\[a\]and\[b\],
\[AM = \dfrac{{a + b}}{2}\]
And \[GM = \sqrt {ab} \]
Considering
\[a = {2^{\sin x}}\]and\[b = {2^{\cos x}}\]
We get:
\[AM = \dfrac{{{2^{\sin x}} + {2^{\cos x}}}}{2}\]
Since\[AM \ge GM\],
We have
\[\dfrac{1}{2}\left( {{2^{\sin x}} + {2^{\cos x}}} \right) \ge \sqrt {{2^{\sin x}} \cdot {2^{\cos x}}} \]
After solving, it becomes:
\[ \Rightarrow {2^{\sin x}} + {2^{\cos x}} \ge 2 \cdot {2^{\dfrac{{\sin x + \cos x}}{2}}}\]
Simplify:
\[ \Rightarrow {2^{\sin x}} + {2^{\cos x}} \ge {2^{1 + \dfrac{{\sin x + \cos x}}{2}}}\]
And, we know that;
\[\sin x + \cos x \ge - \sqrt 2 \].
Therefore,
\[{2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}\]
For:
\[x = \dfrac{{5\pi }}{4}\]
The expression\[M = A + \left| B \right|\]is the function's maximum value. This maximum value is reached whenever sin x or cos x are equal to 1. The expression \[m = A - \left| B \right|\]is the function's minimal value. When there is\[cosx = 1\]or\[sinx = 1\], this minimum is reached.
Hence, \[{2^{\sin x}} + {2^{\cos x}}\]is always greater than or equal to
\[{2^{\left( {1 - \dfrac{1}{{\sqrt 2 }}} \right)}}\]
That means, the minimum value of\[{2^{\sin x}} + {2^{\cos x}}\] is
\[2\left( {1 - \dfrac{1}{{\sqrt 2 }}} \right)\]
Hence, the only value of \[x\] for which\[{2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}\]holds, is
\[x = \dfrac{{5\pi }}{4}\]
Option ‘A’ is correct
Note: In trigonometry, questions involving minima and maxima it is a must try to use the technique of\[AM \ge GM\]sometimes. Do not always try to solve the question only through trigonometric equations and functions. You do not have to learn this formula, just observe here that if the equation is of type\[a{\sin ^2}\phi + b{\cos ^2}\phi a{\sin ^2}\phi + b{\cos ^2}\phi \], no matter what, the maximum value is the larger of values \[(a,b)\]and minimum value is smaller of values\[(a,b)\].
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
