
The only value of \[x\] for which \[{2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}\] holds, is
A. \[\dfrac{{5\pi }}{4}\]
B. \[\dfrac{{3\pi }}{4}\]
C. \[\dfrac{\pi }{2}\]
D. All values of \[x\].
Answer
164.1k+ views
Hint: Use Arithmetic mean\[(AM) \ge \] Geometric mean\[(GM)\]between\[{2^{\sin x}}\]and\[{2^{\cos x}}\]. Here we have to find the minimum value of\[{2^{\sin x}} + {2^{\cos x}}\]. We know that, Arithmetic means\[ \ge \]Geometric means or, \[AM \ge GM\]. The maximum value can reach up to infinity. Now, using the formulas above, it is possible to determine the minimum and maximum values of various trigonometric functions. But keep in mind that we must first infer as much of the equation as we can.
Complete step by step solution:Given the equation,
\[{2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}\]
For any two values, say\[a\]and\[b\],
\[AM = \dfrac{{a + b}}{2}\]
And \[GM = \sqrt {ab} \]
Considering
\[a = {2^{\sin x}}\]and\[b = {2^{\cos x}}\]
We get:
\[AM = \dfrac{{{2^{\sin x}} + {2^{\cos x}}}}{2}\]
Since\[AM \ge GM\],
We have
\[\dfrac{1}{2}\left( {{2^{\sin x}} + {2^{\cos x}}} \right) \ge \sqrt {{2^{\sin x}} \cdot {2^{\cos x}}} \]
After solving, it becomes:
\[ \Rightarrow {2^{\sin x}} + {2^{\cos x}} \ge 2 \cdot {2^{\dfrac{{\sin x + \cos x}}{2}}}\]
Simplify:
\[ \Rightarrow {2^{\sin x}} + {2^{\cos x}} \ge {2^{1 + \dfrac{{\sin x + \cos x}}{2}}}\]
And, we know that;
\[\sin x + \cos x \ge - \sqrt 2 \].
Therefore,
\[{2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}\]
For:
\[x = \dfrac{{5\pi }}{4}\]
The expression\[M = A + \left| B \right|\]is the function's maximum value. This maximum value is reached whenever sin x or cos x are equal to 1. The expression \[m = A - \left| B \right|\]is the function's minimal value. When there is\[cosx = 1\]or\[sinx = 1\], this minimum is reached.
Hence, \[{2^{\sin x}} + {2^{\cos x}}\]is always greater than or equal to
\[{2^{\left( {1 - \dfrac{1}{{\sqrt 2 }}} \right)}}\]
That means, the minimum value of\[{2^{\sin x}} + {2^{\cos x}}\] is
\[2\left( {1 - \dfrac{1}{{\sqrt 2 }}} \right)\]
Hence, the only value of \[x\] for which\[{2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}\]holds, is
\[x = \dfrac{{5\pi }}{4}\]
Option ‘A’ is correct
Note: In trigonometry, questions involving minima and maxima it is a must try to use the technique of\[AM \ge GM\]sometimes. Do not always try to solve the question only through trigonometric equations and functions. You do not have to learn this formula, just observe here that if the equation is of type\[a{\sin ^2}\phi + b{\cos ^2}\phi a{\sin ^2}\phi + b{\cos ^2}\phi \], no matter what, the maximum value is the larger of values \[(a,b)\]and minimum value is smaller of values\[(a,b)\].
Complete step by step solution:Given the equation,
\[{2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}\]
For any two values, say\[a\]and\[b\],
\[AM = \dfrac{{a + b}}{2}\]
And \[GM = \sqrt {ab} \]
Considering
\[a = {2^{\sin x}}\]and\[b = {2^{\cos x}}\]
We get:
\[AM = \dfrac{{{2^{\sin x}} + {2^{\cos x}}}}{2}\]
Since\[AM \ge GM\],
We have
\[\dfrac{1}{2}\left( {{2^{\sin x}} + {2^{\cos x}}} \right) \ge \sqrt {{2^{\sin x}} \cdot {2^{\cos x}}} \]
After solving, it becomes:
\[ \Rightarrow {2^{\sin x}} + {2^{\cos x}} \ge 2 \cdot {2^{\dfrac{{\sin x + \cos x}}{2}}}\]
Simplify:
\[ \Rightarrow {2^{\sin x}} + {2^{\cos x}} \ge {2^{1 + \dfrac{{\sin x + \cos x}}{2}}}\]
And, we know that;
\[\sin x + \cos x \ge - \sqrt 2 \].
Therefore,
\[{2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}\]
For:
\[x = \dfrac{{5\pi }}{4}\]
The expression\[M = A + \left| B \right|\]is the function's maximum value. This maximum value is reached whenever sin x or cos x are equal to 1. The expression \[m = A - \left| B \right|\]is the function's minimal value. When there is\[cosx = 1\]or\[sinx = 1\], this minimum is reached.
Hence, \[{2^{\sin x}} + {2^{\cos x}}\]is always greater than or equal to
\[{2^{\left( {1 - \dfrac{1}{{\sqrt 2 }}} \right)}}\]
That means, the minimum value of\[{2^{\sin x}} + {2^{\cos x}}\] is
\[2\left( {1 - \dfrac{1}{{\sqrt 2 }}} \right)\]
Hence, the only value of \[x\] for which\[{2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}\]holds, is
\[x = \dfrac{{5\pi }}{4}\]
Option ‘A’ is correct
Note: In trigonometry, questions involving minima and maxima it is a must try to use the technique of\[AM \ge GM\]sometimes. Do not always try to solve the question only through trigonometric equations and functions. You do not have to learn this formula, just observe here that if the equation is of type\[a{\sin ^2}\phi + b{\cos ^2}\phi a{\sin ^2}\phi + b{\cos ^2}\phi \], no matter what, the maximum value is the larger of values \[(a,b)\]and minimum value is smaller of values\[(a,b)\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
