
The only value of \[x\] for which \[{2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}\] holds, is
A. \[\dfrac{{5\pi }}{4}\]
B. \[\dfrac{{3\pi }}{4}\]
C. \[\dfrac{\pi }{2}\]
D. All values of \[x\].
Answer
217.2k+ views
Hint: Use Arithmetic mean\[(AM) \ge \] Geometric mean\[(GM)\]between\[{2^{\sin x}}\]and\[{2^{\cos x}}\]. Here we have to find the minimum value of\[{2^{\sin x}} + {2^{\cos x}}\]. We know that, Arithmetic means\[ \ge \]Geometric means or, \[AM \ge GM\]. The maximum value can reach up to infinity. Now, using the formulas above, it is possible to determine the minimum and maximum values of various trigonometric functions. But keep in mind that we must first infer as much of the equation as we can.
Complete step by step solution:Given the equation,
\[{2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}\]
For any two values, say\[a\]and\[b\],
\[AM = \dfrac{{a + b}}{2}\]
And \[GM = \sqrt {ab} \]
Considering
\[a = {2^{\sin x}}\]and\[b = {2^{\cos x}}\]
We get:
\[AM = \dfrac{{{2^{\sin x}} + {2^{\cos x}}}}{2}\]
Since\[AM \ge GM\],
We have
\[\dfrac{1}{2}\left( {{2^{\sin x}} + {2^{\cos x}}} \right) \ge \sqrt {{2^{\sin x}} \cdot {2^{\cos x}}} \]
After solving, it becomes:
\[ \Rightarrow {2^{\sin x}} + {2^{\cos x}} \ge 2 \cdot {2^{\dfrac{{\sin x + \cos x}}{2}}}\]
Simplify:
\[ \Rightarrow {2^{\sin x}} + {2^{\cos x}} \ge {2^{1 + \dfrac{{\sin x + \cos x}}{2}}}\]
And, we know that;
\[\sin x + \cos x \ge - \sqrt 2 \].
Therefore,
\[{2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}\]
For:
\[x = \dfrac{{5\pi }}{4}\]
The expression\[M = A + \left| B \right|\]is the function's maximum value. This maximum value is reached whenever sin x or cos x are equal to 1. The expression \[m = A - \left| B \right|\]is the function's minimal value. When there is\[cosx = 1\]or\[sinx = 1\], this minimum is reached.
Hence, \[{2^{\sin x}} + {2^{\cos x}}\]is always greater than or equal to
\[{2^{\left( {1 - \dfrac{1}{{\sqrt 2 }}} \right)}}\]
That means, the minimum value of\[{2^{\sin x}} + {2^{\cos x}}\] is
\[2\left( {1 - \dfrac{1}{{\sqrt 2 }}} \right)\]
Hence, the only value of \[x\] for which\[{2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}\]holds, is
\[x = \dfrac{{5\pi }}{4}\]
Option ‘A’ is correct
Note: In trigonometry, questions involving minima and maxima it is a must try to use the technique of\[AM \ge GM\]sometimes. Do not always try to solve the question only through trigonometric equations and functions. You do not have to learn this formula, just observe here that if the equation is of type\[a{\sin ^2}\phi + b{\cos ^2}\phi a{\sin ^2}\phi + b{\cos ^2}\phi \], no matter what, the maximum value is the larger of values \[(a,b)\]and minimum value is smaller of values\[(a,b)\].
Complete step by step solution:Given the equation,
\[{2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}\]
For any two values, say\[a\]and\[b\],
\[AM = \dfrac{{a + b}}{2}\]
And \[GM = \sqrt {ab} \]
Considering
\[a = {2^{\sin x}}\]and\[b = {2^{\cos x}}\]
We get:
\[AM = \dfrac{{{2^{\sin x}} + {2^{\cos x}}}}{2}\]
Since\[AM \ge GM\],
We have
\[\dfrac{1}{2}\left( {{2^{\sin x}} + {2^{\cos x}}} \right) \ge \sqrt {{2^{\sin x}} \cdot {2^{\cos x}}} \]
After solving, it becomes:
\[ \Rightarrow {2^{\sin x}} + {2^{\cos x}} \ge 2 \cdot {2^{\dfrac{{\sin x + \cos x}}{2}}}\]
Simplify:
\[ \Rightarrow {2^{\sin x}} + {2^{\cos x}} \ge {2^{1 + \dfrac{{\sin x + \cos x}}{2}}}\]
And, we know that;
\[\sin x + \cos x \ge - \sqrt 2 \].
Therefore,
\[{2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}\]
For:
\[x = \dfrac{{5\pi }}{4}\]
The expression\[M = A + \left| B \right|\]is the function's maximum value. This maximum value is reached whenever sin x or cos x are equal to 1. The expression \[m = A - \left| B \right|\]is the function's minimal value. When there is\[cosx = 1\]or\[sinx = 1\], this minimum is reached.
Hence, \[{2^{\sin x}} + {2^{\cos x}}\]is always greater than or equal to
\[{2^{\left( {1 - \dfrac{1}{{\sqrt 2 }}} \right)}}\]
That means, the minimum value of\[{2^{\sin x}} + {2^{\cos x}}\] is
\[2\left( {1 - \dfrac{1}{{\sqrt 2 }}} \right)\]
Hence, the only value of \[x\] for which\[{2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}\]holds, is
\[x = \dfrac{{5\pi }}{4}\]
Option ‘A’ is correct
Note: In trigonometry, questions involving minima and maxima it is a must try to use the technique of\[AM \ge GM\]sometimes. Do not always try to solve the question only through trigonometric equations and functions. You do not have to learn this formula, just observe here that if the equation is of type\[a{\sin ^2}\phi + b{\cos ^2}\phi a{\sin ^2}\phi + b{\cos ^2}\phi \], no matter what, the maximum value is the larger of values \[(a,b)\]and minimum value is smaller of values\[(a,b)\].
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

