
The number of ways in which an examiner can assign \[30\] marks to \[8\] questions, giving not less than two marks to any question, is
A. \[{}^{30}{C_7}\]
B. \[{}^{21}{C_8}\]
C. \[{}^{21}{C_7}\]
D. \[{}^{30}{C_8}\]
Answer
227.1k+ views
Hint: In the given question, we need to find the number of ways in which an examiner can assign \[30\] marks to \[8\] questions, giving not less than two marks to any question. For this, we will assign the variables to marks assigned to the questions. Also, by using the given condition, we will find the desired result.
Formula used: The following formula used for solving the given question.
The formula of combination is given by, \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Here, \[n\] is the total number of things and \[r\] is the number of things that need to be selected from total things.
Complete step by step solution: We know that \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Here, \[n\] is the total number of things and \[r\] is the number of things that need to be selected from total things.
Now, let \[{x_i}\] be the marks assigned to the question.
Thus, we can say that \[{x_1} + {x_2} + {x_3} + {x_4} + {x_5} + {x_6} + {x_7} + {x_8} = 30\]
Here, according to the given condition, we get
\[{x_i} \ge 2\]
Here, \[i = 1,2,3,4,5,6,7,8\]
Also, suppose that \[y{}_i = {x_i} - 2\]
Here, \[i = 1,2,3,4,5,6,7,8\]
Thus, we can say that
\[{y_1} + {y_2} + {y_3} + {y_4} + {y_5} + {y_6} + {y_7} + {y_8} = ({x_1} + {x_2} + {x_3} + {x_4} + {x_5} + {x_6} + {x_7} + {x_8}) - 8 \times 2\]
By simplifying, we get
\[{y_1} + {y_2} + {y_3} + {y_4} + {y_5} + {y_6} + {y_7} + {y_8} = 30 - 16\]
\[{y_1} + {y_2} + {y_3} + {y_4} + {y_5} + {y_6} + {y_7} + {y_8} = 14\]
So, the total number of solutions to the above equations is given by
\[{}^{14 + {\rm{8}} - {\rm{1}}}{C_{8 - 1}} = {}^{21}{C_7}\]
Hence, the number of ways in which an examiner can assign \[30\] marks to \[8\] questions, giving not less than two marks to any question, is \[{}^{21}{C_7}\].
Thus, Option (C) is correct.
Note: Many students make mistakes in calculation as well as writing the equation according to the given condition. This is the only way, through which we can solve the example in the simplest way. Also, it is essential to find correct equation such as \[{y_1} + {y_2} + {y_3} + {y_4} + {y_5} + {y_6} + {y_7} + {y_8} = 14\] to get the desired result.
Formula used: The following formula used for solving the given question.
The formula of combination is given by, \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Here, \[n\] is the total number of things and \[r\] is the number of things that need to be selected from total things.
Complete step by step solution: We know that \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Here, \[n\] is the total number of things and \[r\] is the number of things that need to be selected from total things.
Now, let \[{x_i}\] be the marks assigned to the question.
Thus, we can say that \[{x_1} + {x_2} + {x_3} + {x_4} + {x_5} + {x_6} + {x_7} + {x_8} = 30\]
Here, according to the given condition, we get
\[{x_i} \ge 2\]
Here, \[i = 1,2,3,4,5,6,7,8\]
Also, suppose that \[y{}_i = {x_i} - 2\]
Here, \[i = 1,2,3,4,5,6,7,8\]
Thus, we can say that
\[{y_1} + {y_2} + {y_3} + {y_4} + {y_5} + {y_6} + {y_7} + {y_8} = ({x_1} + {x_2} + {x_3} + {x_4} + {x_5} + {x_6} + {x_7} + {x_8}) - 8 \times 2\]
By simplifying, we get
\[{y_1} + {y_2} + {y_3} + {y_4} + {y_5} + {y_6} + {y_7} + {y_8} = 30 - 16\]
\[{y_1} + {y_2} + {y_3} + {y_4} + {y_5} + {y_6} + {y_7} + {y_8} = 14\]
So, the total number of solutions to the above equations is given by
\[{}^{14 + {\rm{8}} - {\rm{1}}}{C_{8 - 1}} = {}^{21}{C_7}\]
Hence, the number of ways in which an examiner can assign \[30\] marks to \[8\] questions, giving not less than two marks to any question, is \[{}^{21}{C_7}\].
Thus, Option (C) is correct.
Note: Many students make mistakes in calculation as well as writing the equation according to the given condition. This is the only way, through which we can solve the example in the simplest way. Also, it is essential to find correct equation such as \[{y_1} + {y_2} + {y_3} + {y_4} + {y_5} + {y_6} + {y_7} + {y_8} = 14\] to get the desired result.
Recently Updated Pages
If the vertices of a triangle area unit 2 2 1 1 and class 11 maths JEE_Main

Let A and B be two sets containing 2 elements and 4 class 11 maths JEE_Main

The real roots of the equation x23 + x13 2 0 are A class 11 maths JEE_Main

The number of ways in which an examiner can assign class 11 maths JEE_Main

Consider a rectangle ABCD having 5 7 6 9 points in class 11 maths JEE_Main

How many different words can be formed from the letters class 11 maths JEE_Main

Trending doubts
Understanding Average and RMS Value in Electrical Circuits

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Common Ion Effect: Concept, Applications, and Problem-Solving

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Excess Pressure Inside a Liquid Drop

JEE Main 2023 April 13 Shift 2 Question Paper with Answer Keys & Solutions

Other Pages
JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry (2025-26)

NCERT Solutions For Class 11 Maths Chapter 8 Sequences and Series (2025-26)

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

NCERT Solutions For Class 10 Maths Chapter 10 Conic Sections Exercise 10.4 (2025-26)

