
the number of solutions of the equation \[{\tan ^{ - 1}}\left( {\dfrac{1}{{2x + 1}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{{4x + 1}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{2}{{{x^2}}}} \right)\] is
(A) 0
(B) 1
(C) 2
(D) 3
Answer
233.1k+ views
Hint: here, we will be using the formula for the sum of two inverse tangent functions.
Complete step-by-step answer:
Given, the equation \[{\tan ^{ - 1}}\left( {\dfrac{1}{{2x + 1}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{{4x + 1}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{2}{{{x^2}}}} \right)\]
The sum of two inverse tangent functions \[{\tan ^{ - 1}}a\] and\[{\tan ^{ - 1}}b\] is given by \[{\tan ^{ - 1}}a + {\tan ^{ - 1}}b = {\tan ^{ - 1}}\left( {\dfrac{{a + b}}{{1 - ab}}} \right)\]
Now if we apply this formula to the given equation, then the equation is given by
\[{\tan ^{ - 1}}\left( {\dfrac{{\dfrac{1}{{2x + 1}} + \dfrac{1}{{4x + 1}}}}{{1 - \dfrac{1}{{2x + 1}} \times \dfrac{1}{{4x + 1}}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{2}{{{x^2}}}} \right)\]
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{4x + 1 + 2x + 1}}{{\left( {2x + 1} \right)\left( {4x + 1} \right)}}}}{{\dfrac{{\left( {2x + 1} \right)\left( {4x + 1} \right) - 1}}{{\left( {2x + 1} \right)\left( {4x + 1} \right)}}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{2}{{{x^2}}}} \right)\]
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{6x + 2}}{{8{x^2} + 4x + 2x + 1 - 1}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{2}{{{x^2}}}} \right)\]
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{6x + 2}}{{8{x^2} + 6x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{2}{{{x^2}}}} \right)\]
\[ \Rightarrow \dfrac{{6x + 2}}{{8{x^2} + 6x}} = \dfrac{2}{{{x^2}}}\]
\[ \Rightarrow \left( {6x + 2} \right){x^2} = 2\left( {8{x^2} + 6x} \right)\]
\[ \Rightarrow 6{x^3} + 2{x^2} = 16{x^2} + 12x\]
\[ \Rightarrow 6{x^3} - 14{x^2} - 12x = 0\]
\[ \Rightarrow 2x(3{x^2} - 7x - 6) = 0\]
\[ \Rightarrow 2x(3{x^2} - 9x + 2x - 6) = 0\]
\[ \Rightarrow 2x(3x(x - 3) + 2(x - 3)) = 0\]
\[ \Rightarrow 2x(3x + 2)(x - 3) = 0\]
\[ \Rightarrow x = 0,x = \dfrac{{ - 2}}{3},x = 3\]
\[ \Rightarrow \] the given equation has 3 solutions \[x = 0,x = \dfrac{{ - 2}}{3}\] and \[x = 3\]
Therefore, (D) 3 is the required solution.
Note: these types of questions always require the formula for sum of two inverse tangent functions
Complete step-by-step answer:
Given, the equation \[{\tan ^{ - 1}}\left( {\dfrac{1}{{2x + 1}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{1}{{4x + 1}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{2}{{{x^2}}}} \right)\]
The sum of two inverse tangent functions \[{\tan ^{ - 1}}a\] and\[{\tan ^{ - 1}}b\] is given by \[{\tan ^{ - 1}}a + {\tan ^{ - 1}}b = {\tan ^{ - 1}}\left( {\dfrac{{a + b}}{{1 - ab}}} \right)\]
Now if we apply this formula to the given equation, then the equation is given by
\[{\tan ^{ - 1}}\left( {\dfrac{{\dfrac{1}{{2x + 1}} + \dfrac{1}{{4x + 1}}}}{{1 - \dfrac{1}{{2x + 1}} \times \dfrac{1}{{4x + 1}}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{2}{{{x^2}}}} \right)\]
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{4x + 1 + 2x + 1}}{{\left( {2x + 1} \right)\left( {4x + 1} \right)}}}}{{\dfrac{{\left( {2x + 1} \right)\left( {4x + 1} \right) - 1}}{{\left( {2x + 1} \right)\left( {4x + 1} \right)}}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{2}{{{x^2}}}} \right)\]
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{6x + 2}}{{8{x^2} + 4x + 2x + 1 - 1}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{2}{{{x^2}}}} \right)\]
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{6x + 2}}{{8{x^2} + 6x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{2}{{{x^2}}}} \right)\]
\[ \Rightarrow \dfrac{{6x + 2}}{{8{x^2} + 6x}} = \dfrac{2}{{{x^2}}}\]
\[ \Rightarrow \left( {6x + 2} \right){x^2} = 2\left( {8{x^2} + 6x} \right)\]
\[ \Rightarrow 6{x^3} + 2{x^2} = 16{x^2} + 12x\]
\[ \Rightarrow 6{x^3} - 14{x^2} - 12x = 0\]
\[ \Rightarrow 2x(3{x^2} - 7x - 6) = 0\]
\[ \Rightarrow 2x(3{x^2} - 9x + 2x - 6) = 0\]
\[ \Rightarrow 2x(3x(x - 3) + 2(x - 3)) = 0\]
\[ \Rightarrow 2x(3x + 2)(x - 3) = 0\]
\[ \Rightarrow x = 0,x = \dfrac{{ - 2}}{3},x = 3\]
\[ \Rightarrow \] the given equation has 3 solutions \[x = 0,x = \dfrac{{ - 2}}{3}\] and \[x = 3\]
Therefore, (D) 3 is the required solution.
Note: these types of questions always require the formula for sum of two inverse tangent functions
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

