
The number of solution of the equation $2\cos ({{e}^{x}})={{5}^{x}}+{{5}^{-x}}$ are
A. No solution.
B. One solution.
C. Two solution.
D. Infinitely many solutions.
Answer
164.1k+ views
Hint: To find the number of solutions for the equation given we will find the interval of values of both side of the expression and see if they coincide or not because both should be equal as given $2\cos ({{e}^{x}})={{5}^{x}}+{{5}^{-x}}$.
Taking the interval of function cos we will determine the interval of $2\cos ({{e}^{x}})$ and using relationship $A.M\ge G.M$ we will determine the interval of ${{5}^{x}}+{{5}^{-x}}$.
Formula Used: $A.M=\dfrac{sum\,\,of\,observations.}{Number\,of\,observations.}$
\[G.M={{\left( Product\,of\,observations \right)}^{\dfrac{1}{Number\,\,of\,observations}}}\]
Complete step by step solution: We are given an equation $2\cos ({{e}^{x}})={{5}^{x}}+{{5}^{-x}}$ and we have to find the number of solutions for this equation.
In the equation given we have trigonometric equation on the right side and exponential equation on the left side of the equation.
First we will take the left side of the equation $2\cos ({{e}^{x}})$ ,now we know that the interval of the values of cosine is $\left[ -1,1 \right]$. So,
$-1\le \cos ({{e}^{x}})\le 1$
Multiplying the inequality by $2$ ,
$-2\le 2\cos ({{e}^{x}})\le 2$
We will now take the right side of the equation ${{5}^{x}}+{{5}^{-x}}$,
Both of the terms in ${{5}^{x}}+{{5}^{-x}}$ will be positive for all the real values of $x$ hence the whole identity will be positive.
As both the terms are positive we will apply the relation$A.M\ge G.M$ in it.
The A.M for both the terms will be $\dfrac{{{5}^{x}}+{{5}^{-x}}}{2}$ and G.M for both the terms will be ${{({{5}^{x}}{{.5}^{-x}})}^{{}^{1}/{}_{2}}}$.
Substituting values in the relation $A.M\ge G.M$ and simplify,
$\begin{align}
& \dfrac{{{5}^{x}}+{{5}^{-x}}}{2}\ge {{({{5}^{x}}{{.5}^{-x}})}^{{}^{1}/{}_{2}}} \\
& \dfrac{{{5}^{x}}+{{5}^{-x}}}{2}\ge {{\left( {{5}^{x}}\times \dfrac{1}{{{5}^{x}}} \right)}^{{}^{1}/{}_{2}}} \\
& \dfrac{{{5}^{x}}+{{5}^{-x}}}{2}\ge 1 \\
& {{5}^{x}}+{{5}^{-x}}\ge 2
\end{align}$
It means that value of expression ${{5}^{x}}+{{5}^{-x}}$will be always greater than or equal to $2$.
Now the equality $2\cos ({{e}^{x}})={{5}^{x}}+{{5}^{-x}}$ will hold when both have same interval of values but the interval for left side expression is $-2\le 2\cos ({{e}^{x}})\le 2$ and right side expression is ${{5}^{x}}+{{5}^{-x}}\ge 2$. Hence there will be no solution for this $2\cos ({{e}^{x}})={{5}^{x}}+{{5}^{-x}}$ equality.
There are no solution for the equation $2\cos ({{e}^{x}})={{5}^{x}}+{{5}^{-x}}$.
Option ‘A’ is correct
Note: The inequality of arithmetic means and geometric means that is states that A.M for a set of observations will be always greater than or equal to the G.M for the same observations.
Taking the interval of function cos we will determine the interval of $2\cos ({{e}^{x}})$ and using relationship $A.M\ge G.M$ we will determine the interval of ${{5}^{x}}+{{5}^{-x}}$.
Formula Used: $A.M=\dfrac{sum\,\,of\,observations.}{Number\,of\,observations.}$
\[G.M={{\left( Product\,of\,observations \right)}^{\dfrac{1}{Number\,\,of\,observations}}}\]
Complete step by step solution: We are given an equation $2\cos ({{e}^{x}})={{5}^{x}}+{{5}^{-x}}$ and we have to find the number of solutions for this equation.
In the equation given we have trigonometric equation on the right side and exponential equation on the left side of the equation.
First we will take the left side of the equation $2\cos ({{e}^{x}})$ ,now we know that the interval of the values of cosine is $\left[ -1,1 \right]$. So,
$-1\le \cos ({{e}^{x}})\le 1$
Multiplying the inequality by $2$ ,
$-2\le 2\cos ({{e}^{x}})\le 2$
We will now take the right side of the equation ${{5}^{x}}+{{5}^{-x}}$,
Both of the terms in ${{5}^{x}}+{{5}^{-x}}$ will be positive for all the real values of $x$ hence the whole identity will be positive.
As both the terms are positive we will apply the relation$A.M\ge G.M$ in it.
The A.M for both the terms will be $\dfrac{{{5}^{x}}+{{5}^{-x}}}{2}$ and G.M for both the terms will be ${{({{5}^{x}}{{.5}^{-x}})}^{{}^{1}/{}_{2}}}$.
Substituting values in the relation $A.M\ge G.M$ and simplify,
$\begin{align}
& \dfrac{{{5}^{x}}+{{5}^{-x}}}{2}\ge {{({{5}^{x}}{{.5}^{-x}})}^{{}^{1}/{}_{2}}} \\
& \dfrac{{{5}^{x}}+{{5}^{-x}}}{2}\ge {{\left( {{5}^{x}}\times \dfrac{1}{{{5}^{x}}} \right)}^{{}^{1}/{}_{2}}} \\
& \dfrac{{{5}^{x}}+{{5}^{-x}}}{2}\ge 1 \\
& {{5}^{x}}+{{5}^{-x}}\ge 2
\end{align}$
It means that value of expression ${{5}^{x}}+{{5}^{-x}}$will be always greater than or equal to $2$.
Now the equality $2\cos ({{e}^{x}})={{5}^{x}}+{{5}^{-x}}$ will hold when both have same interval of values but the interval for left side expression is $-2\le 2\cos ({{e}^{x}})\le 2$ and right side expression is ${{5}^{x}}+{{5}^{-x}}\ge 2$. Hence there will be no solution for this $2\cos ({{e}^{x}})={{5}^{x}}+{{5}^{-x}}$ equality.
There are no solution for the equation $2\cos ({{e}^{x}})={{5}^{x}}+{{5}^{-x}}$.
Option ‘A’ is correct
Note: The inequality of arithmetic means and geometric means that is states that A.M for a set of observations will be always greater than or equal to the G.M for the same observations.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
