
The moment of inertia of a rectangular lamina of mass 'm', length ' l ' and width ‘b' about an axis passing through its centre of mass, perpendicular to its diagonal and lies in the plane.
A) $\text{m}\left[ \dfrac{{{\ell }^{2}}+{{\text{b}}^{2}}}{12} \right]$
B) $\dfrac{\mathrm{m}}{12}\left[\dfrac{\ell^{4}+\mathrm{b}^{4}}{\ell^{2}+\mathrm{b}^{2}}\right]$
C) $\dfrac{\mathrm{m}}{6}\left[\dfrac{\ell^{4}+\mathrm{b}^{4}}{\ell^{2}+\mathrm{b}^{2}}\right]$
D) $\text{None of these}$
Answer
521.9k+ views
Hint: Moment of Inertia is the name given to rotational inertia, the rotational analog of mass for straight movement. It shows up in the connections for the dynamics of rotational movement. The moment of inertia must be determined regarding a picked pivot of revolution. For a point mass, the moment of inertia is only the mass multiplied by the square of perpendicular distance to the rotational axis, $I=m{{r}^{2}}$. That point mass relationship turns into the reason for all different moments of inertia since any item can be developed from an assortment of point masses.
Complete step by step answer:
To solve the given question, we must apply the concept of the moment of inertia.
We consider the given diagram to answer the given question,

We can calculate the differential area as,
$\Rightarrow d A=b d x$
$\Rightarrow \sigma =\dfrac{M}{l\times b}$
Therefore,
$\Rightarrow dM=\sigma dA\Rightarrow \dfrac{Mdx}{lb}$
Integrating the values, we get,
$\Rightarrow \int{d}{{I}_{y}}=\int\limits_{-\dfrac{l}{2}}^{\dfrac{l}{2}}{d}M\times {{x}^{2}}$
$\Rightarrow {{I}_{y}}=\dfrac{M}{l}\int\limits_{-\dfrac{l}{2}}^{\dfrac{l}{2}}{{{x}^{2}}}dx$
$\Rightarrow \dfrac{M{{l}^{2}}}{12}$
Similarly, ${{I}_{y}}=\dfrac{M{{b}^{2}}}{12}$
$\Rightarrow {{I}_{z}}={{I}_{x}}+{{I}_{y}}=\dfrac{M{{b}^{2}}}{12}+\dfrac{M{{l}^{2}}}{12}$
$\Rightarrow M\left( \dfrac{{{l}^{2}}+{{b}^{2}}}{12} \right)$
Therefore, the correct answer is Option A.
Note: Moment of Inertia is characterized as for a particular rotation axis. The moment of inertia of a point mass with deference toward a pivot is characterized as the result of the mass multiplied by the distance from the axis squared. The moment of inertia of any all-inclusive article is developed from that essential definition. The overall type existing apart from the moment of inertia includes an integral.
Complete step by step answer:
To solve the given question, we must apply the concept of the moment of inertia.
We consider the given diagram to answer the given question,

We can calculate the differential area as,
$\Rightarrow d A=b d x$
$\Rightarrow \sigma =\dfrac{M}{l\times b}$
Therefore,
$\Rightarrow dM=\sigma dA\Rightarrow \dfrac{Mdx}{lb}$
Integrating the values, we get,
$\Rightarrow \int{d}{{I}_{y}}=\int\limits_{-\dfrac{l}{2}}^{\dfrac{l}{2}}{d}M\times {{x}^{2}}$
$\Rightarrow {{I}_{y}}=\dfrac{M}{l}\int\limits_{-\dfrac{l}{2}}^{\dfrac{l}{2}}{{{x}^{2}}}dx$
$\Rightarrow \dfrac{M{{l}^{2}}}{12}$
Similarly, ${{I}_{y}}=\dfrac{M{{b}^{2}}}{12}$
$\Rightarrow {{I}_{z}}={{I}_{x}}+{{I}_{y}}=\dfrac{M{{b}^{2}}}{12}+\dfrac{M{{l}^{2}}}{12}$
$\Rightarrow M\left( \dfrac{{{l}^{2}}+{{b}^{2}}}{12} \right)$
Therefore, the correct answer is Option A.
Note: Moment of Inertia is characterized as for a particular rotation axis. The moment of inertia of a point mass with deference toward a pivot is characterized as the result of the mass multiplied by the distance from the axis squared. The moment of inertia of any all-inclusive article is developed from that essential definition. The overall type existing apart from the moment of inertia includes an integral.
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Circuit Switching vs Packet Switching: Key Differences Explained

Mass vs Weight: Key Differences Explained for Students

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Ionisation Energy and Ionisation Potential Explained

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

