
The moment of inertia of a big drop is $I$. If $8$ droplets are formed from the big drop, then the moment of inertia of the small droplet is.
(A) $\dfrac{I}{{32}}$
(B) $\dfrac{I}{{16}}$
(C) $\dfrac{I}{8}$
(D) $\dfrac{I}{4}$
Answer
233.1k+ views
Hint: The moment of inertia of a particle about an axis of rotation is the product of the mass of the particle and the square of the distance of the particle from the axis. Here the moment of inertia of a big drop is given. If we combine $8$ such drops to form a big drop then the moment of inertia of one drop should be found.
Formula used:
The moment of inertia of a sphere,
$I = \dfrac{2}{5}M{R^2}$
where $M$ stands for the mass of the sphere and $R$ stands for the radius of curvature of the sphere.
Complete step by step solution:
Let us assume the drop to be spherical.
The moment of inertia of a sphere is given by, $I = \dfrac{2}{5}M{R^2}$.
A big drop is formed by combining small drops. The volume will remain the same after the formation of the big drop from the small drops.
Let $r$ be the radius of the small drops,
Then the volume of $n$ small drops will be, ${V_n} = n\dfrac{4}{3}\pi {r^3}$
Let $R$ be the radius of the big drop,
Then the volume of the big drop will be $V = \dfrac{4}{3}\pi {R^3}$
The volume of the big drop will be equal to the volume of $n$ small drops.
$n\dfrac{4}{3}\pi {r^3} = \dfrac{4}{3}\pi {R^3}$
Canceling the common terms we get
$n{r^3} = {R^3}$
Taking the cube root of the above equation,
${n^{\dfrac{1}{3}}}r = R$
We know that $n = 8$. Putting this value in the above equation$M$
${8^{\dfrac{1}{3}}}r = R$
From this, the radius of the small drop can be written as,
$r = \dfrac{R}{2}$
The mass of the big drop is $M$.
Then the mass of one small drop will be $\dfrac{M}{8}$.
Therefore, the moment of inertia of the small droplet will be
${I_s} = \dfrac{2}{5}\left[ {\dfrac{M}{8}} \right]{\left[ {\dfrac{R}{2}} \right]^2}$
Solving the above equation,
${I_s} = \dfrac{1}{{32}}\left[ {\dfrac{2}{5}M{R^2}} \right]$
That is
${I_s} = \dfrac{I}{{32}}$
The answer is: Option (A): $\dfrac{I}{{32}}$
Note:
Rotational inertia is the inability of a body at rest to rotate by itself, and a body in uniform rotational motion to stop by itself is called the rotational inertia of a body. The moment of inertia is a measure of rotational inertia. Mass is a measure of inertia.
Formula used:
The moment of inertia of a sphere,
$I = \dfrac{2}{5}M{R^2}$
where $M$ stands for the mass of the sphere and $R$ stands for the radius of curvature of the sphere.
Complete step by step solution:
Let us assume the drop to be spherical.
The moment of inertia of a sphere is given by, $I = \dfrac{2}{5}M{R^2}$.
A big drop is formed by combining small drops. The volume will remain the same after the formation of the big drop from the small drops.
Let $r$ be the radius of the small drops,
Then the volume of $n$ small drops will be, ${V_n} = n\dfrac{4}{3}\pi {r^3}$
Let $R$ be the radius of the big drop,
Then the volume of the big drop will be $V = \dfrac{4}{3}\pi {R^3}$
The volume of the big drop will be equal to the volume of $n$ small drops.
$n\dfrac{4}{3}\pi {r^3} = \dfrac{4}{3}\pi {R^3}$
Canceling the common terms we get
$n{r^3} = {R^3}$
Taking the cube root of the above equation,
${n^{\dfrac{1}{3}}}r = R$
We know that $n = 8$. Putting this value in the above equation$M$
${8^{\dfrac{1}{3}}}r = R$
From this, the radius of the small drop can be written as,
$r = \dfrac{R}{2}$
The mass of the big drop is $M$.
Then the mass of one small drop will be $\dfrac{M}{8}$.
Therefore, the moment of inertia of the small droplet will be
${I_s} = \dfrac{2}{5}\left[ {\dfrac{M}{8}} \right]{\left[ {\dfrac{R}{2}} \right]^2}$
Solving the above equation,
${I_s} = \dfrac{1}{{32}}\left[ {\dfrac{2}{5}M{R^2}} \right]$
That is
${I_s} = \dfrac{I}{{32}}$
The answer is: Option (A): $\dfrac{I}{{32}}$
Note:
Rotational inertia is the inability of a body at rest to rotate by itself, and a body in uniform rotational motion to stop by itself is called the rotational inertia of a body. The moment of inertia is a measure of rotational inertia. Mass is a measure of inertia.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

