
The molar heat capacity of a gas at constant volume is \[{C_v}\]. If n mole of the gas undergo $\Delta T$ change in temperature, its internal energy will change by \[n{C_{v\;}}\] $\Delta T$
(A) Only if the change of temperature occurs at constant volume
(B) Only if the change of temperature occurs at constant pressure
(C) In any process which in not adiabatic
(D) In any process
Answer
220.5k+ views
Hint: Use the first law of thermodynamics which states that, if the quantity of heat supplied to the system is capable of doing work, then the quantity of heat absorbed by the system is equal to the sum of the external work done by the system, and the increase in the internal energy of the system. Mathematically,
$dQ = dW + dU$
Complete step by step solution
According to the first law of thermodynamics,
$dQ = dW + dU$ ……(i)
Where, dQ = Amount of heat added to the system.
dW = External work done by the system.
dU = Change in internal energy of the system.
Now, we know that specific heat of a gas at constant volume \[\left( {{C_v}} \right)\] is defined as the amount of heat required to raise the temperature of 1g gas through \[1^\circ C\] keeping the volume of the gas constant.
${C_v} = {\left( {\dfrac{{dQ}}{{dt}}} \right)_v} = {\left( {\dfrac{{dU}}{{dt}}} \right)_v}$ ……(ii)
Again, \[dW = PdV\] ……(iii)
Where, P = Pressure
dV = Change in volume
As volume is constant,
$dV = 0$
$\therefore dW = 0$, (From equation (iii))
So, equation (i) becomes
$dQ = dU$
Again, using equation (ii), we get
$dU = {C_v}dT$
For n mole of gas,
$dU = n{C_v}dT$
This can only happen if the temperature change occurred at constant volume. Therefore correct option is A
Note: In thermodynamics, state function is the property whose value does not depend on the path taken by the system to reach a specific value. For example, if a system changes from state 1 to state 2 then the value of dU will depend on the value of dT at state 1 and 2 but not on the path taken to reach the desired result.
$dQ = dW + dU$
Complete step by step solution
According to the first law of thermodynamics,
$dQ = dW + dU$ ……(i)
Where, dQ = Amount of heat added to the system.
dW = External work done by the system.
dU = Change in internal energy of the system.
Now, we know that specific heat of a gas at constant volume \[\left( {{C_v}} \right)\] is defined as the amount of heat required to raise the temperature of 1g gas through \[1^\circ C\] keeping the volume of the gas constant.
${C_v} = {\left( {\dfrac{{dQ}}{{dt}}} \right)_v} = {\left( {\dfrac{{dU}}{{dt}}} \right)_v}$ ……(ii)
Again, \[dW = PdV\] ……(iii)
Where, P = Pressure
dV = Change in volume
As volume is constant,
$dV = 0$
$\therefore dW = 0$, (From equation (iii))
So, equation (i) becomes
$dQ = dU$
Again, using equation (ii), we get
$dU = {C_v}dT$
For n mole of gas,
$dU = n{C_v}dT$
This can only happen if the temperature change occurred at constant volume. Therefore correct option is A
Note: In thermodynamics, state function is the property whose value does not depend on the path taken by the system to reach a specific value. For example, if a system changes from state 1 to state 2 then the value of dU will depend on the value of dT at state 1 and 2 but not on the path taken to reach the desired result.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

