Answer
Verified
62.7k+ views
- Hint: Discrete observations means the observations are distinct. There is a clear gap between the observations. Mean is a measure of the central tendency of a finite set of observations. It is also known as average. The average of some observations is obtained by dividing the sum of the observations by the total number of observations.
Formula used:
\[\text{ Mean of the observations} =\dfrac{\text{ (sum of the observations)}}{\text{(number of observations)}}\]
Complete step-by-step solution:
Here the observations are \[{y_1},{y_2},.....,{y_n}\]
Sum of the observations is \[{y_1} + {y_2} + ..... + {y_n}\], which can be expressed as the summation \[\sum\limits_{i = 1}^n {{y_i}} \], where \[i = 1,2,.....,n\]
and number of observations is \[n\].
Now, using the formula of mean, we get
\[m = \dfrac{{\sum\limits_{i = 1}^n {{y_i}} }}{n}\]
So, option A is correct.
Additional information:
The mean is the same as the average of the data. The sum of all observations divided by the number of observations is the mean of the data.
Discrete observation: If there is a separation between two observations, then data is known as discrete observations.
Note: \[\sum\limits_{i = 1}^n {{y_i}} \]represents the sum of the observations \[{y_1},{y_2},.....,{y_n}\], where \[i = 1,2,.....,n\]. You must have to write the starting value of \[i\] under the summation symbol \[\sum {} \]and the end value of \[i\] above the summation symbol. Since the value of \[i\] starts from \[1\] and ends at \[n\], so the number of values of \[i\] is equal to \[n\] and hence number of observations is \[n\].
Formula used:
\[\text{ Mean of the observations} =\dfrac{\text{ (sum of the observations)}}{\text{(number of observations)}}\]
Complete step-by-step solution:
Here the observations are \[{y_1},{y_2},.....,{y_n}\]
Sum of the observations is \[{y_1} + {y_2} + ..... + {y_n}\], which can be expressed as the summation \[\sum\limits_{i = 1}^n {{y_i}} \], where \[i = 1,2,.....,n\]
and number of observations is \[n\].
Now, using the formula of mean, we get
\[m = \dfrac{{\sum\limits_{i = 1}^n {{y_i}} }}{n}\]
So, option A is correct.
Additional information:
The mean is the same as the average of the data. The sum of all observations divided by the number of observations is the mean of the data.
Discrete observation: If there is a separation between two observations, then data is known as discrete observations.
Note: \[\sum\limits_{i = 1}^n {{y_i}} \]represents the sum of the observations \[{y_1},{y_2},.....,{y_n}\], where \[i = 1,2,.....,n\]. You must have to write the starting value of \[i\] under the summation symbol \[\sum {} \]and the end value of \[i\] above the summation symbol. Since the value of \[i\] starts from \[1\] and ends at \[n\], so the number of values of \[i\] is equal to \[n\] and hence number of observations is \[n\].
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
What is the common property of the oxides CONO and class 10 chemistry JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
If four points A63B 35C4 2 and Dx3x are given in such class 10 maths JEE_Main
The area of square inscribed in a circle of diameter class 10 maths JEE_Main
Other Pages
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
The resultant of vec A and vec B is perpendicular to class 11 physics JEE_Main
Differentiate between homogeneous and heterogeneous class 12 chemistry JEE_Main