
The maximum voltage drop across inductance is

A) $50 Volt$
B) $25 Volt$
C) $12.5 Volt$
D) $5 Volt$
Answer
218.4k+ views
Hint: In this question, we have to use the equations for the series LCR circuit. To find voltage drop we have to multiply the total current with the total resistance of the circuit. In an LCR circuit, the net effective resistance is offered by the combination of resistor, inductor, and capacitor and this is known as the impedance of the circuit.
Formula used:
i) $V = {V_0}\sin \omega t$ (Where V stands for the applied voltage, ${V_0}$ is the peak value of voltage, $\omega = 2\pi f$, where f stands for the frequency of ac)
ii) ${X_L} = \omega L$ (${X_L}$Stands for the inductive resistance, L stands for the inductance of the circuit)
iii) ${X_c} = \dfrac{1}{{\omega C}}$ (${X_C}$ stands for the capacitive reactance, C stands for the capacitance of the circuit)
iv) $Z = \sqrt {{R^2} + {{({X_L} - {X_c})}^2}} $ (Z stands for the impedance of the circuit, R stands for the resistance of the circuit)
v) $I = \dfrac{{{V_0}}}{Z}$ (Where I stands for the current)
vi) ${V_{{X_L}}} = I{X_L}$(where ${V_{{X_L}}}$stands for the voltage drop across the inductance)
Complete step by step solution:
We know that, $V = {V_0}\sin \omega t$ …………………...……………………….(1)
In the question, it is given $V = 5\sin (100t)$……………………..(2)
Comparing $(1)$ and $(2)$ we get,
${V_0} = 5volt$ and $\omega = 100$ (We need these values for the calculation of Inductive resistance, capacitive reactance and maximum current)
Now, we have to find the impedance of the circuit. To find the impedance, we have to find the inductive resistance and the capacitive reactance using the formulae given above)
The inductive resistance, ${X_L} = \omega L$
$\because \omega = 100,L = 0.5H$
${X_L} = 100 \times 0.5 = 50$
The capacitive reactance, ${X_c} = \dfrac{1}{{\omega C}}$
$\because \omega = 100,C = 200 \times {10^{ - 6}}$
${X_c} = \dfrac{1}{{100 \times 200 \times {{10}^{ - 6}}}} = 50$
We have calculated the net resistance offered by the inductor i.e. the inductive resistance and the net resistance offered by the capacitor i.e. the capacitive reactance using their respective formulae.
From the question, $R = 20\Omega $
Now we have the values of ${X_{L,}}{X_c} \& R$ to calculate impedance.
$Z = \sqrt {{R^2} + {{({X_L} - {X_c})}^2}} $
$\because {X_L} = 50,{X_C} = 50\& R = 20$
$Z = \sqrt {{{20}^2} + {{(50 - 50)}^2}} $
$ \Rightarrow Z = \sqrt {{{20}^2} + 0} $
$ \Rightarrow Z = \sqrt {{{20}^2}} = 20$
Using the equation of impedance, we have calculated Z, now we have to find the maximum current through the circuit using the formula, $I = \dfrac{{{V_0}}}{Z}$
$\because {V_0} = 5,Z = 20$
$I = \dfrac{5}{{20}} = 0.25 A$
We know that the formula for current is \[I = \dfrac{V}{R}\].
Since the net effective resistance offered by the circuit is Z we have to use Z to find the maximum current instead of R.
Now we have all the values required to find the voltage drop across the inductance. The voltage drop is obtained by multiplying the total current with the inductive resistance.
${V_{{X_L}}} = I{X_L}$
${V_{{X_L}}} = 0.25 \times 50 $
${V_{{X_L}}} = 12.5 Volt$
The answer is (C) $12.5 Volt$.
Note: While solving units of resistance, capacitance and inductance should be taken care of. Always convert the given value of resistance into units of $\Omega $ (for example if resistance is given in Kilo $\Omega $ convert into $\Omega$ before using in the formula) same applies for inductance and capacitance as well.
Formula used:
i) $V = {V_0}\sin \omega t$ (Where V stands for the applied voltage, ${V_0}$ is the peak value of voltage, $\omega = 2\pi f$, where f stands for the frequency of ac)
ii) ${X_L} = \omega L$ (${X_L}$Stands for the inductive resistance, L stands for the inductance of the circuit)
iii) ${X_c} = \dfrac{1}{{\omega C}}$ (${X_C}$ stands for the capacitive reactance, C stands for the capacitance of the circuit)
iv) $Z = \sqrt {{R^2} + {{({X_L} - {X_c})}^2}} $ (Z stands for the impedance of the circuit, R stands for the resistance of the circuit)
v) $I = \dfrac{{{V_0}}}{Z}$ (Where I stands for the current)
vi) ${V_{{X_L}}} = I{X_L}$(where ${V_{{X_L}}}$stands for the voltage drop across the inductance)
Complete step by step solution:
We know that, $V = {V_0}\sin \omega t$ …………………...……………………….(1)
In the question, it is given $V = 5\sin (100t)$……………………..(2)
Comparing $(1)$ and $(2)$ we get,
${V_0} = 5volt$ and $\omega = 100$ (We need these values for the calculation of Inductive resistance, capacitive reactance and maximum current)
Now, we have to find the impedance of the circuit. To find the impedance, we have to find the inductive resistance and the capacitive reactance using the formulae given above)
The inductive resistance, ${X_L} = \omega L$
$\because \omega = 100,L = 0.5H$
${X_L} = 100 \times 0.5 = 50$
The capacitive reactance, ${X_c} = \dfrac{1}{{\omega C}}$
$\because \omega = 100,C = 200 \times {10^{ - 6}}$
${X_c} = \dfrac{1}{{100 \times 200 \times {{10}^{ - 6}}}} = 50$
We have calculated the net resistance offered by the inductor i.e. the inductive resistance and the net resistance offered by the capacitor i.e. the capacitive reactance using their respective formulae.
From the question, $R = 20\Omega $
Now we have the values of ${X_{L,}}{X_c} \& R$ to calculate impedance.
$Z = \sqrt {{R^2} + {{({X_L} - {X_c})}^2}} $
$\because {X_L} = 50,{X_C} = 50\& R = 20$
$Z = \sqrt {{{20}^2} + {{(50 - 50)}^2}} $
$ \Rightarrow Z = \sqrt {{{20}^2} + 0} $
$ \Rightarrow Z = \sqrt {{{20}^2}} = 20$
Using the equation of impedance, we have calculated Z, now we have to find the maximum current through the circuit using the formula, $I = \dfrac{{{V_0}}}{Z}$
$\because {V_0} = 5,Z = 20$
$I = \dfrac{5}{{20}} = 0.25 A$
We know that the formula for current is \[I = \dfrac{V}{R}\].
Since the net effective resistance offered by the circuit is Z we have to use Z to find the maximum current instead of R.
Now we have all the values required to find the voltage drop across the inductance. The voltage drop is obtained by multiplying the total current with the inductive resistance.
${V_{{X_L}}} = I{X_L}$
${V_{{X_L}}} = 0.25 \times 50 $
${V_{{X_L}}} = 12.5 Volt$
The answer is (C) $12.5 Volt$.
Note: While solving units of resistance, capacitance and inductance should be taken care of. Always convert the given value of resistance into units of $\Omega $ (for example if resistance is given in Kilo $\Omega $ convert into $\Omega$ before using in the formula) same applies for inductance and capacitance as well.
Recently Updated Pages
Young’s Double Slit Experiment Derivation Explained

Wheatstone Bridge Explained: Working, Formula & Uses

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

