
The mass of a density bottle is $25\,g$ when empty, $50\,g$ when filled completely with water and $365\,g$ when filled completely with mercury. Find the density of mercury.
A) $7.3\,g/cc$
B) $113.6\,g/cc$
C) $13.6\,g/cc$
D) $14.6\,g/cc$
Answer
135.3k+ views
Hint: The question has given us all the information we need. First, find the net weight of water in the water in the first case. We all know that the density of water is $1\,g/cc$ . Use this to find the volume of the given density bottle. Then, find the net weight of mercury in the density bottle and use the volume we found out in the first case to find the density of mercury.
Complete step by step answer:
We will be trying to solve the question exactly as told in the hint section of the solution to the question.
Using the first case, we will find the volume of the density bottle. And then, we will use the newly-found volume of the density bottle to find the density of mercury.
Let us first find the volume of the bottle through the first case:
Weight of the empty density bottle as given in the question: ${W_b} = 25\,g$
Total weight after being completely filled by water: ${W_t} = 50\,g$
Hence, weight of the water can be found out as:
$\implies$ ${W_w} = \,{W_t} - {W_b}$
Substituting in the values, we get:
$
\implies {W_w} = 50 - 25 \\
\implies {W_w} = 25\,g \\
$
We already know that the density of water is $1\,g/cc$
Hence, volume of the density bottle is: $V = \dfrac{{25\,g}}{{1\,g/cc}}$ or $25\,cc$
Now, let us consider the second case:
Weight of the empty density bottle as given in the question: ${W_b} = 25\,g$
Total weight after being completely filled with mercury: ${W_t} = 365\,g$
Weight of mercury can be found out as:
$\implies$ ${W_m} = {W_t} - {W_b}$
Substituting in the values, we get:
$
\implies {W_m} = 365 - 25 \\
\implies {W_m} = 340\,g \\
$
We have already found out the value of volume of the given density bottle using the first case as:
$V = 25\,cc$
Using this, we can find the density of mercury as:
$\implies$ $d = \dfrac{{{W_m}}}{V}$
Substituting in the values that we found out:
$
\implies d = \dfrac{{340\,g}}{{25\,cc}} \\
\implies d = 13.6\,g/cc \\
$
Hence, option (C) is the correct option.
Note: A very important thing to do in such questions is to find out the density of the given density bottle or the container in which liquids or fluids are being stored. So always start solving the question by first finding out the volume of the container or density bottle. Also, always check the units of the weight and volume and tick the answer accordingly.
Complete step by step answer:
We will be trying to solve the question exactly as told in the hint section of the solution to the question.
Using the first case, we will find the volume of the density bottle. And then, we will use the newly-found volume of the density bottle to find the density of mercury.
Let us first find the volume of the bottle through the first case:
Weight of the empty density bottle as given in the question: ${W_b} = 25\,g$
Total weight after being completely filled by water: ${W_t} = 50\,g$
Hence, weight of the water can be found out as:
$\implies$ ${W_w} = \,{W_t} - {W_b}$
Substituting in the values, we get:
$
\implies {W_w} = 50 - 25 \\
\implies {W_w} = 25\,g \\
$
We already know that the density of water is $1\,g/cc$
Hence, volume of the density bottle is: $V = \dfrac{{25\,g}}{{1\,g/cc}}$ or $25\,cc$
Now, let us consider the second case:
Weight of the empty density bottle as given in the question: ${W_b} = 25\,g$
Total weight after being completely filled with mercury: ${W_t} = 365\,g$
Weight of mercury can be found out as:
$\implies$ ${W_m} = {W_t} - {W_b}$
Substituting in the values, we get:
$
\implies {W_m} = 365 - 25 \\
\implies {W_m} = 340\,g \\
$
We have already found out the value of volume of the given density bottle using the first case as:
$V = 25\,cc$
Using this, we can find the density of mercury as:
$\implies$ $d = \dfrac{{{W_m}}}{V}$
Substituting in the values that we found out:
$
\implies d = \dfrac{{340\,g}}{{25\,cc}} \\
\implies d = 13.6\,g/cc \\
$
Hence, option (C) is the correct option.
Note: A very important thing to do in such questions is to find out the density of the given density bottle or the container in which liquids or fluids are being stored. So always start solving the question by first finding out the volume of the container or density bottle. Also, always check the units of the weight and volume and tick the answer accordingly.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

How to find Oxidation Number - Important Concepts for JEE

Half-Life of Order Reactions - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

A body is falling from a height h After it has fallen class 11 physics JEE_Main

Collision - Important Concepts and Tips for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion In A Plane: Line Class 11 Notes: CBSE Physics Chapter 3
