The locus of the middle points of the chords of the parabola \[{{y}^{2}}=4ax\] which passes
through the origin is
(a) \[{{y}^{2}}=ax\]
(b) \[{{y}^{2}}=2ax\]
(c) \[{{y}^{2}}=4ax\]
(d) \[{{x}^{2}}=4ay\]
Answer
Verified
118.8k+ views
Hint: Consider any two points on parabola with parameter \[t\] and write the equation of chord joining them. Pass the equation through origin and solve them to find the locus of the point joining middle points of chord.
We have the parabola \[{{y}^{2}}=4ax\]. To find the locus of middle point of the chords
joining two points on the parabola, we will assume two points on the parabola of the
form \[P({{t}_{1}})=\left( at_{1}^{2},2a{{t}_{1}} \right)\]and \[Q({{t}_{2}})=\left( at_{2}^{2},2a{{t}_{2}}
\right)\].
We know that the equation of chords joining two points \[P({{t}_{1}})\]and\[Q({{t}_{2}})\] on the
parabola is \[y\left( {{t}_{1}}+{{t}_{2}} \right)=2x+2a{{t}_{1}}{{t}_{2}}\].
We know that this chord passes through the origin. So, we will substitute the point\[\left( 0,0
\right)\]in the equation of the chord.
Substituting the point\[\left( 0,0 \right)\]in the equation of chord, we get\[0\left( {{t}_{1}}+{{t}_{2}}
\right)=2\times 0+2a{{t}_{1}}{{t}_{2}}\].
Hence, let’s assume\[{{t}_{2}}=0\].
We observe that any chord of the parabola which is passing through origin has origin as one of its
end points.
We can assume other end of the chord to be \[P({{t}_{1}})=\left( at_{1}^{2},2a{{t}_{1}} \right)\].
To find the middle point of two points of the form \[\left( {{x}_{1}},{{y}_{1}} \right)\]and\[\left(
{{x}_{2}},{{y}_{2}} \right)\], use the formula \[\left(
\dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\].
Substituting\[{{x}_{1}}=0,{{y}_{1}}=0,{{x}_{2}}=at_{1}^{2},{{y}_{2}}=2a{{t}_{1}}\]in the above formula,
we get the middle point of \[\left( 0,0 \right)\]and\[P({{t}_{1}})=\left( at_{1}^{2},2a{{t}_{1}}
\right)\]as\[\left( \dfrac{0+at_{1}^{2}}{2},\dfrac{0+2a{{t}_{1}}}{2} \right)\].
Thus, the middle point of chords has the form \[\left( \dfrac{at_{1}^{2}}{2},a{{t}_{1}} \right)\].
To find the locus of middle point of the chords, let’s assume \[x=\dfrac{at_{1}^{2}}{2},y=a{{t}_{1}}\].
Eliminating \[{{t}_{1}}\]from both equations by rearranging the terms, we
get \[\dfrac{2x}{a}=t_{1}^{2},\dfrac{y}{a}={{t}_{1}}\].
Substituting the value of \[{{t}_{1}}\]from both equations, we get \[\dfrac{2x}{a}={{\left( \dfrac{y}{a}
\right)}^{2}}\].
Rearranging the terms, we get \[{{y}^{2}}=2ax\].
Hence, the correct answer is \[{{y}^{2}}=2ax\].
Note: It’s very necessary to use the fact that any chord of the parabola passing through origin has
origin as one of its end points. We also verified this fact by assuming any two points on the parabola
and making the equation of chord pass through origin.
We have the parabola \[{{y}^{2}}=4ax\]. To find the locus of middle point of the chords
joining two points on the parabola, we will assume two points on the parabola of the
form \[P({{t}_{1}})=\left( at_{1}^{2},2a{{t}_{1}} \right)\]and \[Q({{t}_{2}})=\left( at_{2}^{2},2a{{t}_{2}}
\right)\].
We know that the equation of chords joining two points \[P({{t}_{1}})\]and\[Q({{t}_{2}})\] on the
parabola is \[y\left( {{t}_{1}}+{{t}_{2}} \right)=2x+2a{{t}_{1}}{{t}_{2}}\].
We know that this chord passes through the origin. So, we will substitute the point\[\left( 0,0
\right)\]in the equation of the chord.
Substituting the point\[\left( 0,0 \right)\]in the equation of chord, we get\[0\left( {{t}_{1}}+{{t}_{2}}
\right)=2\times 0+2a{{t}_{1}}{{t}_{2}}\].
Hence, let’s assume\[{{t}_{2}}=0\].
We observe that any chord of the parabola which is passing through origin has origin as one of its
end points.
We can assume other end of the chord to be \[P({{t}_{1}})=\left( at_{1}^{2},2a{{t}_{1}} \right)\].
To find the middle point of two points of the form \[\left( {{x}_{1}},{{y}_{1}} \right)\]and\[\left(
{{x}_{2}},{{y}_{2}} \right)\], use the formula \[\left(
\dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\].
Substituting\[{{x}_{1}}=0,{{y}_{1}}=0,{{x}_{2}}=at_{1}^{2},{{y}_{2}}=2a{{t}_{1}}\]in the above formula,
we get the middle point of \[\left( 0,0 \right)\]and\[P({{t}_{1}})=\left( at_{1}^{2},2a{{t}_{1}}
\right)\]as\[\left( \dfrac{0+at_{1}^{2}}{2},\dfrac{0+2a{{t}_{1}}}{2} \right)\].
Thus, the middle point of chords has the form \[\left( \dfrac{at_{1}^{2}}{2},a{{t}_{1}} \right)\].
To find the locus of middle point of the chords, let’s assume \[x=\dfrac{at_{1}^{2}}{2},y=a{{t}_{1}}\].
Eliminating \[{{t}_{1}}\]from both equations by rearranging the terms, we
get \[\dfrac{2x}{a}=t_{1}^{2},\dfrac{y}{a}={{t}_{1}}\].
Substituting the value of \[{{t}_{1}}\]from both equations, we get \[\dfrac{2x}{a}={{\left( \dfrac{y}{a}
\right)}^{2}}\].
Rearranging the terms, we get \[{{y}^{2}}=2ax\].
Hence, the correct answer is \[{{y}^{2}}=2ax\].
Note: It’s very necessary to use the fact that any chord of the parabola passing through origin has
origin as one of its end points. We also verified this fact by assuming any two points on the parabola
and making the equation of chord pass through origin.
Recently Updated Pages
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
Algebraic Formula
Difference Between Constants and Variables: JEE Main 2024
Arithmetic Mean Formula - Explanation, Calculation, Solved Examples, and FAQs
Difference Between Square and Rhombuss: JEE Main 2024
Height and Distance - Definition, Pythagorean Theorem, Formula, Calculation, Methods & Solved Examples
Trending doubts
Physics Average Value and RMS Value JEE Main 2025
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Electron Gain Enthalpy and Electron Affinity for JEE
Collision - Important Concepts and Tips for JEE
Clemmenson and Wolff Kishner Reductions for JEE
JEE Main Chemistry Exam Pattern 2025
Other Pages
NCERT Solutions for Class 11 Maths In Hindi Chapter 16 Probability
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Keys & Solutions
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
NCERT Solutions for Class 11 Maths Chapter 6 Permutations And Combinations Ex 6.4