
The lines ${(lx + my)^2} - 3{(mx - ly)^2} = 0$ and $lx + my + n = 0$ forms
A. an isosceles triangle
B. a right angled triangle
C. an equilateral triangle
D. None of the above
Answer
233.1k+ views
Hint: To find which kind of triangle will form first we will simplify the given equation to the simplest form so that we can easily compare it with the general equation. After comparing we will find the value of $a$, $b$ and $h$. Then put all these values in the formula for the angle between lines. With the help of angle, we will easily identify the kind of triangle.
Formula Used:
$\tan \alpha = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
Complete step by step solution: Given, equation ${(lx + my)^2} - 3{(mx - ly)^2} = 0$ and $lx + my + n = 0$
${(lx + my)^2} - 3{(mx - ly)^2} = 0$
We know ${(a \pm b)^2} = {a^2} \pm 2ab + {b^2}$
${l^2}{x^2} + {m^2}{y^2} + 2lmxy - 3({m^2}{x^2} + {l^2}{y^2} - 2lmxy)$
${l^2}{x^2} + {m^2}{y^2} + 2lmxy - 3{m^2}{x^2} - 3{l^2}{y^2} + 6lmxy$
After simplifying, we get
$({l^2} - 3{m^2}){x^2} + ({m^2} - 3{l^2}){y^2} + 8lmxy = 0$
The general equation is $a{x^2} + 2hxy + b{y^2} = 0$
On comparing, we will get
$a = ({l^2} - 3{m^2})$, $h = 4lm$ and $b = {m^2} - 3{l^2}$
We know the formula for angle between the two lines is
$\tan \alpha = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
Putting $a = ({l^2} - 3{m^2})$, $h = 4lm$ and $b = {m^2} - 3{l^2}$
$\tan \alpha = \left| {\dfrac{{2\sqrt {{{\left( {4lm} \right)}^2} - ({l^2} - 3{m^2})({m^2} - 3{l^2})} }}{{{l^2} - 3{m^2} + {m^2} - 3{l^2}}}} \right|$
$\tan \alpha = \left| {\dfrac{{2\sqrt {16{l^2}{m^2} - \left( {{l^2}{m^2} - 3{l^4} - 3{m^4} + 9{m^2}{l^2}} \right)} }}{{ - 2{m^2} - 2{l^2}}}} \right|$
$\tan \alpha = \left| {\dfrac{{2\sqrt {16{l^2}{m^2} - \left( {10{l^2}{m^2} - 3({l^4} + {m^4})} \right)} }}{{ - 2{m^2} - 2{l^2}}}} \right|$
After simplification, we get
$\tan \alpha = \left| {\dfrac{{2\sqrt {16{l^2}{m^2} - 10{l^2}{m^2} + 3({l^4} + {m^4})} }}{{ - 2({m^2} + {l^2})}}} \right|$
$\tan \alpha = \left| {\dfrac{{2\sqrt {6{l^2}{m^2} + 3({l^4} + {m^4})} }}{{ - 2({m^2} + {l^2})}}} \right|$
After simplification, we get
$\tan \alpha = \dfrac{{\sqrt {6{l^2}{m^2} + 3{l^4} + 3{m^4}} }}{{({m^2} + {l^2})}}$
$\tan \alpha = \dfrac{{\sqrt 3 \sqrt {2{l^2}{m^2} + {l^4} + {m^4}} }}{{({m^2} + {l^2})}}$
$\tan \alpha = \dfrac{{\sqrt 3 \sqrt {{{\left( {{m^2} + {l^2}} \right)}^2}} }}{{({m^2} + {l^2})}}$
$\tan \alpha = \dfrac{{\sqrt 3 \left( {{m^2} + {l^2}} \right)}}{{\left( {{m^2} + {l^2}} \right)}}$
$\tan \alpha = \sqrt 3 $
Taking ${\tan ^{ - 1}}$ on both side
${\tan ^{ - 1}}\left( {\tan \alpha } \right) = {\tan ^{ - 1}}\left( {\sqrt 3 } \right)$
We ${\tan ^{ - 1}}\left( {\sqrt 3 } \right) = \dfrac{\pi }{3}$
$\alpha = \dfrac{\pi }{3}$
Hence, the triangle is an equilateral triangle.
Therefore, option C is correct
Note: Students should simplify the given equations correctly as it is a complicated equation they can make mistakes while solving that. They should know the value of ${\tan ^{ - 1}}\left( {\sqrt 3 } \right) = \dfrac{\pi }{3}$ because without them they will not be able to solve the question.
Formula Used:
$\tan \alpha = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
Complete step by step solution: Given, equation ${(lx + my)^2} - 3{(mx - ly)^2} = 0$ and $lx + my + n = 0$
${(lx + my)^2} - 3{(mx - ly)^2} = 0$
We know ${(a \pm b)^2} = {a^2} \pm 2ab + {b^2}$
${l^2}{x^2} + {m^2}{y^2} + 2lmxy - 3({m^2}{x^2} + {l^2}{y^2} - 2lmxy)$
${l^2}{x^2} + {m^2}{y^2} + 2lmxy - 3{m^2}{x^2} - 3{l^2}{y^2} + 6lmxy$
After simplifying, we get
$({l^2} - 3{m^2}){x^2} + ({m^2} - 3{l^2}){y^2} + 8lmxy = 0$
The general equation is $a{x^2} + 2hxy + b{y^2} = 0$
On comparing, we will get
$a = ({l^2} - 3{m^2})$, $h = 4lm$ and $b = {m^2} - 3{l^2}$
We know the formula for angle between the two lines is
$\tan \alpha = \left| {\dfrac{{2\sqrt {{h^2} - ab} }}{{a + b}}} \right|$
Putting $a = ({l^2} - 3{m^2})$, $h = 4lm$ and $b = {m^2} - 3{l^2}$
$\tan \alpha = \left| {\dfrac{{2\sqrt {{{\left( {4lm} \right)}^2} - ({l^2} - 3{m^2})({m^2} - 3{l^2})} }}{{{l^2} - 3{m^2} + {m^2} - 3{l^2}}}} \right|$
$\tan \alpha = \left| {\dfrac{{2\sqrt {16{l^2}{m^2} - \left( {{l^2}{m^2} - 3{l^4} - 3{m^4} + 9{m^2}{l^2}} \right)} }}{{ - 2{m^2} - 2{l^2}}}} \right|$
$\tan \alpha = \left| {\dfrac{{2\sqrt {16{l^2}{m^2} - \left( {10{l^2}{m^2} - 3({l^4} + {m^4})} \right)} }}{{ - 2{m^2} - 2{l^2}}}} \right|$
After simplification, we get
$\tan \alpha = \left| {\dfrac{{2\sqrt {16{l^2}{m^2} - 10{l^2}{m^2} + 3({l^4} + {m^4})} }}{{ - 2({m^2} + {l^2})}}} \right|$
$\tan \alpha = \left| {\dfrac{{2\sqrt {6{l^2}{m^2} + 3({l^4} + {m^4})} }}{{ - 2({m^2} + {l^2})}}} \right|$
After simplification, we get
$\tan \alpha = \dfrac{{\sqrt {6{l^2}{m^2} + 3{l^4} + 3{m^4}} }}{{({m^2} + {l^2})}}$
$\tan \alpha = \dfrac{{\sqrt 3 \sqrt {2{l^2}{m^2} + {l^4} + {m^4}} }}{{({m^2} + {l^2})}}$
$\tan \alpha = \dfrac{{\sqrt 3 \sqrt {{{\left( {{m^2} + {l^2}} \right)}^2}} }}{{({m^2} + {l^2})}}$
$\tan \alpha = \dfrac{{\sqrt 3 \left( {{m^2} + {l^2}} \right)}}{{\left( {{m^2} + {l^2}} \right)}}$
$\tan \alpha = \sqrt 3 $
Taking ${\tan ^{ - 1}}$ on both side
${\tan ^{ - 1}}\left( {\tan \alpha } \right) = {\tan ^{ - 1}}\left( {\sqrt 3 } \right)$
We ${\tan ^{ - 1}}\left( {\sqrt 3 } \right) = \dfrac{\pi }{3}$
$\alpha = \dfrac{\pi }{3}$
Hence, the triangle is an equilateral triangle.
Therefore, option C is correct
Note: Students should simplify the given equations correctly as it is a complicated equation they can make mistakes while solving that. They should know the value of ${\tan ^{ - 1}}\left( {\sqrt 3 } \right) = \dfrac{\pi }{3}$ because without them they will not be able to solve the question.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

