
The inverse of $\begin{bmatrix}2 & -3 \\-4 & 2 \end{bmatrix}$ is
A. $\dfrac{-1}{8}\begin{bmatrix}2 & 3 \\ 4 & 2 \end{bmatrix}$
B. $\dfrac{-1}{8}\begin{bmatrix}3 & 2 \\ 2 & 4 \end{bmatrix}$
C. $\dfrac{1}{8}\begin{bmatrix}2 & 3 \\ 4 & 2 \end{bmatrix}$
D. $\dfrac{1}{8}\begin{bmatrix}3 & 2 \\ 2 & 4 \end{bmatrix}$
Answer
161.7k+ views
Hint: Inverse of the matrix can be determined by first calculating the value of the determinant of the given matrix. Afterward, determine the co-factor matrix in order to find the adjoint of the given matrix. Finally, substitute both these values in the required formula to determine the inverse of the matrix.
Formula used: $A^{-1}=\dfrac{adj\lgroup~A\rgroup}{\det\lgroup~A\rgroup}$
$C_{ij}=\lgroup-1\rgroup^{i+j}\det\lgroup~M_{ij}\rgroup$
Complete step by step solution: The given matrix, in accordance with the question, is,
$\begin{bmatrix}2 & -3 \\-4 & 2 \end{bmatrix}$
Consider the given matrix to be A.
Let us now determine the determinant of the given matrix A.,
$\begin{vmatrix} 2 & -3 \\ -4 & 2 \end{vmatrix}$
Now,
$|A|=2\times2-\lgroup-3\rgroup\times\lgroup-4\rgroup$
$\Rightarrow|A|=4-12=-8$
We must now find the adjoint of matrix A. To determine the adjoint of matrix A, first, find the cofactor matrix of a given matrix A and afterward take the transpose of the cofactor matrix.
The cofactor of the matrix can be obtained as:
$C_{ij}=\lgroup-1\rgroup^{i+j}\det\lgroup~M_{ij}\rgroup$
Here, $M_{ij}$ denotes the $\lgroup~i,j\rgroup^{th}$ minor matrix after eliminating the ith row and jth column.
Now, the Cofactor of matrix A can be written as:
$\begin{bmatrix}c_{11} & c_{12} \\c_{21} & c_{22} \end{bmatrix}=\begin{bmatrix}2 & -\lgroup-4\rgroup \\-\lgroup-3\rgroup & 2 \end{bmatrix}$
This implies,
$\begin{bmatrix}c_{11} & c_{12} \\c_{21} & c_{22} \end{bmatrix}=\begin{bmatrix}2 & 4 \\3 & 2 \end{bmatrix}$
Thus, the adjoint of the matrix A is,
$adj\lgroup~A\rgroup=\begin{bmatrix}2 & 3 \\4 & 2 \end{bmatrix}$
The inverse of a matrix can be determined by the following formula,
$A^{-1}=\dfrac{adj\lgroup~A\rgroup}{\det\lgroup~A\rgroup}$
The value of adjoint A and the determinant A are already determined. After substituting these values in the above formula we get,
$A^{-1}=\dfrac{-1}{8}\begin{bmatrix}2 & 3 \\4 & 2 \end{bmatrix}$
Thus, Option (A) is correct.
Note: It should be emphasized that in order to find the inverse matrix, the square matrix must be non-singular which is to have a determinant value that is not zero. The new matrix obtained by interchanging the rows and columns of the previous matrix is described as the matrix transpose.
Formula used: $A^{-1}=\dfrac{adj\lgroup~A\rgroup}{\det\lgroup~A\rgroup}$
$C_{ij}=\lgroup-1\rgroup^{i+j}\det\lgroup~M_{ij}\rgroup$
Complete step by step solution: The given matrix, in accordance with the question, is,
$\begin{bmatrix}2 & -3 \\-4 & 2 \end{bmatrix}$
Consider the given matrix to be A.
Let us now determine the determinant of the given matrix A.,
$\begin{vmatrix} 2 & -3 \\ -4 & 2 \end{vmatrix}$
Now,
$|A|=2\times2-\lgroup-3\rgroup\times\lgroup-4\rgroup$
$\Rightarrow|A|=4-12=-8$
We must now find the adjoint of matrix A. To determine the adjoint of matrix A, first, find the cofactor matrix of a given matrix A and afterward take the transpose of the cofactor matrix.
The cofactor of the matrix can be obtained as:
$C_{ij}=\lgroup-1\rgroup^{i+j}\det\lgroup~M_{ij}\rgroup$
Here, $M_{ij}$ denotes the $\lgroup~i,j\rgroup^{th}$ minor matrix after eliminating the ith row and jth column.
Now, the Cofactor of matrix A can be written as:
$\begin{bmatrix}c_{11} & c_{12} \\c_{21} & c_{22} \end{bmatrix}=\begin{bmatrix}2 & -\lgroup-4\rgroup \\-\lgroup-3\rgroup & 2 \end{bmatrix}$
This implies,
$\begin{bmatrix}c_{11} & c_{12} \\c_{21} & c_{22} \end{bmatrix}=\begin{bmatrix}2 & 4 \\3 & 2 \end{bmatrix}$
Thus, the adjoint of the matrix A is,
$adj\lgroup~A\rgroup=\begin{bmatrix}2 & 3 \\4 & 2 \end{bmatrix}$
The inverse of a matrix can be determined by the following formula,
$A^{-1}=\dfrac{adj\lgroup~A\rgroup}{\det\lgroup~A\rgroup}$
The value of adjoint A and the determinant A are already determined. After substituting these values in the above formula we get,
$A^{-1}=\dfrac{-1}{8}\begin{bmatrix}2 & 3 \\4 & 2 \end{bmatrix}$
Thus, Option (A) is correct.
Note: It should be emphasized that in order to find the inverse matrix, the square matrix must be non-singular which is to have a determinant value that is not zero. The new matrix obtained by interchanging the rows and columns of the previous matrix is described as the matrix transpose.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
