
The inverse of $\begin{bmatrix}2 & -3 \\-4 & 2 \end{bmatrix}$ is
A. $\dfrac{-1}{8}\begin{bmatrix}2 & 3 \\ 4 & 2 \end{bmatrix}$
B. $\dfrac{-1}{8}\begin{bmatrix}3 & 2 \\ 2 & 4 \end{bmatrix}$
C. $\dfrac{1}{8}\begin{bmatrix}2 & 3 \\ 4 & 2 \end{bmatrix}$
D. $\dfrac{1}{8}\begin{bmatrix}3 & 2 \\ 2 & 4 \end{bmatrix}$
Answer
216k+ views
Hint: Inverse of the matrix can be determined by first calculating the value of the determinant of the given matrix. Afterward, determine the co-factor matrix in order to find the adjoint of the given matrix. Finally, substitute both these values in the required formula to determine the inverse of the matrix.
Formula used: $A^{-1}=\dfrac{adj\lgroup~A\rgroup}{\det\lgroup~A\rgroup}$
$C_{ij}=\lgroup-1\rgroup^{i+j}\det\lgroup~M_{ij}\rgroup$
Complete step by step solution: The given matrix, in accordance with the question, is,
$\begin{bmatrix}2 & -3 \\-4 & 2 \end{bmatrix}$
Consider the given matrix to be A.
Let us now determine the determinant of the given matrix A.,
$\begin{vmatrix} 2 & -3 \\ -4 & 2 \end{vmatrix}$
Now,
$|A|=2\times2-\lgroup-3\rgroup\times\lgroup-4\rgroup$
$\Rightarrow|A|=4-12=-8$
We must now find the adjoint of matrix A. To determine the adjoint of matrix A, first, find the cofactor matrix of a given matrix A and afterward take the transpose of the cofactor matrix.
The cofactor of the matrix can be obtained as:
$C_{ij}=\lgroup-1\rgroup^{i+j}\det\lgroup~M_{ij}\rgroup$
Here, $M_{ij}$ denotes the $\lgroup~i,j\rgroup^{th}$ minor matrix after eliminating the ith row and jth column.
Now, the Cofactor of matrix A can be written as:
$\begin{bmatrix}c_{11} & c_{12} \\c_{21} & c_{22} \end{bmatrix}=\begin{bmatrix}2 & -\lgroup-4\rgroup \\-\lgroup-3\rgroup & 2 \end{bmatrix}$
This implies,
$\begin{bmatrix}c_{11} & c_{12} \\c_{21} & c_{22} \end{bmatrix}=\begin{bmatrix}2 & 4 \\3 & 2 \end{bmatrix}$
Thus, the adjoint of the matrix A is,
$adj\lgroup~A\rgroup=\begin{bmatrix}2 & 3 \\4 & 2 \end{bmatrix}$
The inverse of a matrix can be determined by the following formula,
$A^{-1}=\dfrac{adj\lgroup~A\rgroup}{\det\lgroup~A\rgroup}$
The value of adjoint A and the determinant A are already determined. After substituting these values in the above formula we get,
$A^{-1}=\dfrac{-1}{8}\begin{bmatrix}2 & 3 \\4 & 2 \end{bmatrix}$
Thus, Option (A) is correct.
Note: It should be emphasized that in order to find the inverse matrix, the square matrix must be non-singular which is to have a determinant value that is not zero. The new matrix obtained by interchanging the rows and columns of the previous matrix is described as the matrix transpose.
Formula used: $A^{-1}=\dfrac{adj\lgroup~A\rgroup}{\det\lgroup~A\rgroup}$
$C_{ij}=\lgroup-1\rgroup^{i+j}\det\lgroup~M_{ij}\rgroup$
Complete step by step solution: The given matrix, in accordance with the question, is,
$\begin{bmatrix}2 & -3 \\-4 & 2 \end{bmatrix}$
Consider the given matrix to be A.
Let us now determine the determinant of the given matrix A.,
$\begin{vmatrix} 2 & -3 \\ -4 & 2 \end{vmatrix}$
Now,
$|A|=2\times2-\lgroup-3\rgroup\times\lgroup-4\rgroup$
$\Rightarrow|A|=4-12=-8$
We must now find the adjoint of matrix A. To determine the adjoint of matrix A, first, find the cofactor matrix of a given matrix A and afterward take the transpose of the cofactor matrix.
The cofactor of the matrix can be obtained as:
$C_{ij}=\lgroup-1\rgroup^{i+j}\det\lgroup~M_{ij}\rgroup$
Here, $M_{ij}$ denotes the $\lgroup~i,j\rgroup^{th}$ minor matrix after eliminating the ith row and jth column.
Now, the Cofactor of matrix A can be written as:
$\begin{bmatrix}c_{11} & c_{12} \\c_{21} & c_{22} \end{bmatrix}=\begin{bmatrix}2 & -\lgroup-4\rgroup \\-\lgroup-3\rgroup & 2 \end{bmatrix}$
This implies,
$\begin{bmatrix}c_{11} & c_{12} \\c_{21} & c_{22} \end{bmatrix}=\begin{bmatrix}2 & 4 \\3 & 2 \end{bmatrix}$
Thus, the adjoint of the matrix A is,
$adj\lgroup~A\rgroup=\begin{bmatrix}2 & 3 \\4 & 2 \end{bmatrix}$
The inverse of a matrix can be determined by the following formula,
$A^{-1}=\dfrac{adj\lgroup~A\rgroup}{\det\lgroup~A\rgroup}$
The value of adjoint A and the determinant A are already determined. After substituting these values in the above formula we get,
$A^{-1}=\dfrac{-1}{8}\begin{bmatrix}2 & 3 \\4 & 2 \end{bmatrix}$
Thus, Option (A) is correct.
Note: It should be emphasized that in order to find the inverse matrix, the square matrix must be non-singular which is to have a determinant value that is not zero. The new matrix obtained by interchanging the rows and columns of the previous matrix is described as the matrix transpose.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

