
The integral $\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} $is equal to:
1. $2$
2. $4$
3. $ - 1$
4. $ - 2$
Answer
232.8k+ views
Hint: Here, in this question we are given an integral $\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} $ and we have to find its value. First step is to use trigonometric formula $1 + \cos 2A = 2{\cos ^2}A$ in the denominator and you will get the direct function to integrate i.e., $\int {{{\sec }^2}xdx = } \tan x$. Now to find the values use $\tan \theta = \sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} $ and solve further.
Formula Used:
Trigonometric formulas –
$\tan \theta = \sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} $
$1 + \cos 2A = 2{\cos ^2}A$
Integration formula –
$\int {{{\sec }^2}xdx = } \tan x$
Complete step by step Solution:
Given that,
$\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} $
Assume the given integral be $I$,
$I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} $
$ = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{2{{\cos }^2}\dfrac{x}{2}}}} $
$ = \dfrac{1}{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {{{\sec }^2}\dfrac{x}{2}} dx$
$ = \dfrac{1}{2}\left[ {\dfrac{{\tan \dfrac{x}{2}}}{{\dfrac{1}{2}}}} \right]_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}}$
$ = \tan \dfrac{{3\pi }}{8} - \tan \dfrac{\pi }{8} - - - - - (1)$
Using trigonometric formula, $\tan \theta = \sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} $to find the value of $\tan \dfrac{{3\pi }}{8}$and $\tan \dfrac{\pi }{8}$
\[\tan \dfrac{\pi }{8} = \sqrt {\dfrac{{1 - \cos \dfrac{\pi }{4}}}{{1 + \cos \dfrac{\pi }{4}}}} \]
\[ = \sqrt {\dfrac{{1 - \dfrac{1}{{\sqrt 2 }}}}{{1 + \dfrac{1}{{\sqrt 2 }}}}} \]
\[ = \sqrt {\dfrac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}}} \]
\[ = \sqrt {\dfrac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}} \times \dfrac{{\sqrt 2 - 1}}{{\sqrt 2 - 1}}} \]
Multiply denominator and numerator by \[\sqrt 2 - 1\],
\[ = \dfrac{{\sqrt 2 - 1}}{1}\]
Similarly, \[\tan \dfrac{{3\pi }}{8} = \sqrt 2 + 1\]
Putting the required values in equation (1),
\[ = \left( {\sqrt 2 + 1} \right) - \left( {\sqrt 2 - 1} \right)\]
\[ = 2\]
Hence, the correct option is 1.
Note: To solve such problems one should have a good knowledge of trigonometric and integration formulas. Also, when there’s a function inside the function always apply the chain rule like we do in differentiation after doing the differentiation of the whole function we multiply the differentiation of the inner function. But in this, we integrate the function and then divide the required term by the differentiation of the inner part. It can be written as $\int {f\left( {g\left( x \right)} \right)dx = \dfrac{{\int {f\left( {g\left( x \right)} \right)dx} }}{{\dfrac{d}{{dx}}g\left( x \right)}}} $. Now, to solve the limits in integration. First, integrate the whole function then subtract the integration using the lower limit from the integration using the upper limit. For example, the required integration is $2x$and we have the limit $2$ to $4$ then the answer will be $2\left( 4 \right) - 2\left( 2 \right) = 4$.
Formula Used:
Trigonometric formulas –
$\tan \theta = \sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} $
$1 + \cos 2A = 2{\cos ^2}A$
Integration formula –
$\int {{{\sec }^2}xdx = } \tan x$
Complete step by step Solution:
Given that,
$\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} $
Assume the given integral be $I$,
$I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} $
$ = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{2{{\cos }^2}\dfrac{x}{2}}}} $
$ = \dfrac{1}{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {{{\sec }^2}\dfrac{x}{2}} dx$
$ = \dfrac{1}{2}\left[ {\dfrac{{\tan \dfrac{x}{2}}}{{\dfrac{1}{2}}}} \right]_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}}$
$ = \tan \dfrac{{3\pi }}{8} - \tan \dfrac{\pi }{8} - - - - - (1)$
Using trigonometric formula, $\tan \theta = \sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} $to find the value of $\tan \dfrac{{3\pi }}{8}$and $\tan \dfrac{\pi }{8}$
\[\tan \dfrac{\pi }{8} = \sqrt {\dfrac{{1 - \cos \dfrac{\pi }{4}}}{{1 + \cos \dfrac{\pi }{4}}}} \]
\[ = \sqrt {\dfrac{{1 - \dfrac{1}{{\sqrt 2 }}}}{{1 + \dfrac{1}{{\sqrt 2 }}}}} \]
\[ = \sqrt {\dfrac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}}} \]
\[ = \sqrt {\dfrac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}} \times \dfrac{{\sqrt 2 - 1}}{{\sqrt 2 - 1}}} \]
Multiply denominator and numerator by \[\sqrt 2 - 1\],
\[ = \dfrac{{\sqrt 2 - 1}}{1}\]
Similarly, \[\tan \dfrac{{3\pi }}{8} = \sqrt 2 + 1\]
Putting the required values in equation (1),
\[ = \left( {\sqrt 2 + 1} \right) - \left( {\sqrt 2 - 1} \right)\]
\[ = 2\]
Hence, the correct option is 1.
Note: To solve such problems one should have a good knowledge of trigonometric and integration formulas. Also, when there’s a function inside the function always apply the chain rule like we do in differentiation after doing the differentiation of the whole function we multiply the differentiation of the inner function. But in this, we integrate the function and then divide the required term by the differentiation of the inner part. It can be written as $\int {f\left( {g\left( x \right)} \right)dx = \dfrac{{\int {f\left( {g\left( x \right)} \right)dx} }}{{\dfrac{d}{{dx}}g\left( x \right)}}} $. Now, to solve the limits in integration. First, integrate the whole function then subtract the integration using the lower limit from the integration using the upper limit. For example, the required integration is $2x$and we have the limit $2$ to $4$ then the answer will be $2\left( 4 \right) - 2\left( 2 \right) = 4$.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

