
The integral $\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} $is equal to:
1. $2$
2. $4$
3. $ - 1$
4. $ - 2$
Answer
161.1k+ views
Hint: Here, in this question we are given an integral $\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} $ and we have to find its value. First step is to use trigonometric formula $1 + \cos 2A = 2{\cos ^2}A$ in the denominator and you will get the direct function to integrate i.e., $\int {{{\sec }^2}xdx = } \tan x$. Now to find the values use $\tan \theta = \sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} $ and solve further.
Formula Used:
Trigonometric formulas –
$\tan \theta = \sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} $
$1 + \cos 2A = 2{\cos ^2}A$
Integration formula –
$\int {{{\sec }^2}xdx = } \tan x$
Complete step by step Solution:
Given that,
$\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} $
Assume the given integral be $I$,
$I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} $
$ = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{2{{\cos }^2}\dfrac{x}{2}}}} $
$ = \dfrac{1}{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {{{\sec }^2}\dfrac{x}{2}} dx$
$ = \dfrac{1}{2}\left[ {\dfrac{{\tan \dfrac{x}{2}}}{{\dfrac{1}{2}}}} \right]_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}}$
$ = \tan \dfrac{{3\pi }}{8} - \tan \dfrac{\pi }{8} - - - - - (1)$
Using trigonometric formula, $\tan \theta = \sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} $to find the value of $\tan \dfrac{{3\pi }}{8}$and $\tan \dfrac{\pi }{8}$
\[\tan \dfrac{\pi }{8} = \sqrt {\dfrac{{1 - \cos \dfrac{\pi }{4}}}{{1 + \cos \dfrac{\pi }{4}}}} \]
\[ = \sqrt {\dfrac{{1 - \dfrac{1}{{\sqrt 2 }}}}{{1 + \dfrac{1}{{\sqrt 2 }}}}} \]
\[ = \sqrt {\dfrac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}}} \]
\[ = \sqrt {\dfrac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}} \times \dfrac{{\sqrt 2 - 1}}{{\sqrt 2 - 1}}} \]
Multiply denominator and numerator by \[\sqrt 2 - 1\],
\[ = \dfrac{{\sqrt 2 - 1}}{1}\]
Similarly, \[\tan \dfrac{{3\pi }}{8} = \sqrt 2 + 1\]
Putting the required values in equation (1),
\[ = \left( {\sqrt 2 + 1} \right) - \left( {\sqrt 2 - 1} \right)\]
\[ = 2\]
Hence, the correct option is 1.
Note: To solve such problems one should have a good knowledge of trigonometric and integration formulas. Also, when there’s a function inside the function always apply the chain rule like we do in differentiation after doing the differentiation of the whole function we multiply the differentiation of the inner function. But in this, we integrate the function and then divide the required term by the differentiation of the inner part. It can be written as $\int {f\left( {g\left( x \right)} \right)dx = \dfrac{{\int {f\left( {g\left( x \right)} \right)dx} }}{{\dfrac{d}{{dx}}g\left( x \right)}}} $. Now, to solve the limits in integration. First, integrate the whole function then subtract the integration using the lower limit from the integration using the upper limit. For example, the required integration is $2x$and we have the limit $2$ to $4$ then the answer will be $2\left( 4 \right) - 2\left( 2 \right) = 4$.
Formula Used:
Trigonometric formulas –
$\tan \theta = \sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} $
$1 + \cos 2A = 2{\cos ^2}A$
Integration formula –
$\int {{{\sec }^2}xdx = } \tan x$
Complete step by step Solution:
Given that,
$\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} $
Assume the given integral be $I$,
$I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} $
$ = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{2{{\cos }^2}\dfrac{x}{2}}}} $
$ = \dfrac{1}{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {{{\sec }^2}\dfrac{x}{2}} dx$
$ = \dfrac{1}{2}\left[ {\dfrac{{\tan \dfrac{x}{2}}}{{\dfrac{1}{2}}}} \right]_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}}$
$ = \tan \dfrac{{3\pi }}{8} - \tan \dfrac{\pi }{8} - - - - - (1)$
Using trigonometric formula, $\tan \theta = \sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} $to find the value of $\tan \dfrac{{3\pi }}{8}$and $\tan \dfrac{\pi }{8}$
\[\tan \dfrac{\pi }{8} = \sqrt {\dfrac{{1 - \cos \dfrac{\pi }{4}}}{{1 + \cos \dfrac{\pi }{4}}}} \]
\[ = \sqrt {\dfrac{{1 - \dfrac{1}{{\sqrt 2 }}}}{{1 + \dfrac{1}{{\sqrt 2 }}}}} \]
\[ = \sqrt {\dfrac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}}} \]
\[ = \sqrt {\dfrac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}} \times \dfrac{{\sqrt 2 - 1}}{{\sqrt 2 - 1}}} \]
Multiply denominator and numerator by \[\sqrt 2 - 1\],
\[ = \dfrac{{\sqrt 2 - 1}}{1}\]
Similarly, \[\tan \dfrac{{3\pi }}{8} = \sqrt 2 + 1\]
Putting the required values in equation (1),
\[ = \left( {\sqrt 2 + 1} \right) - \left( {\sqrt 2 - 1} \right)\]
\[ = 2\]
Hence, the correct option is 1.
Note: To solve such problems one should have a good knowledge of trigonometric and integration formulas. Also, when there’s a function inside the function always apply the chain rule like we do in differentiation after doing the differentiation of the whole function we multiply the differentiation of the inner function. But in this, we integrate the function and then divide the required term by the differentiation of the inner part. It can be written as $\int {f\left( {g\left( x \right)} \right)dx = \dfrac{{\int {f\left( {g\left( x \right)} \right)dx} }}{{\dfrac{d}{{dx}}g\left( x \right)}}} $. Now, to solve the limits in integration. First, integrate the whole function then subtract the integration using the lower limit from the integration using the upper limit. For example, the required integration is $2x$and we have the limit $2$ to $4$ then the answer will be $2\left( 4 \right) - 2\left( 2 \right) = 4$.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

List of Fastest Century in IPL History
