
The integral $\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} $is equal to:
1. $2$
2. $4$
3. $ - 1$
4. $ - 2$
Answer
217.2k+ views
Hint: Here, in this question we are given an integral $\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} $ and we have to find its value. First step is to use trigonometric formula $1 + \cos 2A = 2{\cos ^2}A$ in the denominator and you will get the direct function to integrate i.e., $\int {{{\sec }^2}xdx = } \tan x$. Now to find the values use $\tan \theta = \sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} $ and solve further.
Formula Used:
Trigonometric formulas –
$\tan \theta = \sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} $
$1 + \cos 2A = 2{\cos ^2}A$
Integration formula –
$\int {{{\sec }^2}xdx = } \tan x$
Complete step by step Solution:
Given that,
$\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} $
Assume the given integral be $I$,
$I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} $
$ = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{2{{\cos }^2}\dfrac{x}{2}}}} $
$ = \dfrac{1}{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {{{\sec }^2}\dfrac{x}{2}} dx$
$ = \dfrac{1}{2}\left[ {\dfrac{{\tan \dfrac{x}{2}}}{{\dfrac{1}{2}}}} \right]_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}}$
$ = \tan \dfrac{{3\pi }}{8} - \tan \dfrac{\pi }{8} - - - - - (1)$
Using trigonometric formula, $\tan \theta = \sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} $to find the value of $\tan \dfrac{{3\pi }}{8}$and $\tan \dfrac{\pi }{8}$
\[\tan \dfrac{\pi }{8} = \sqrt {\dfrac{{1 - \cos \dfrac{\pi }{4}}}{{1 + \cos \dfrac{\pi }{4}}}} \]
\[ = \sqrt {\dfrac{{1 - \dfrac{1}{{\sqrt 2 }}}}{{1 + \dfrac{1}{{\sqrt 2 }}}}} \]
\[ = \sqrt {\dfrac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}}} \]
\[ = \sqrt {\dfrac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}} \times \dfrac{{\sqrt 2 - 1}}{{\sqrt 2 - 1}}} \]
Multiply denominator and numerator by \[\sqrt 2 - 1\],
\[ = \dfrac{{\sqrt 2 - 1}}{1}\]
Similarly, \[\tan \dfrac{{3\pi }}{8} = \sqrt 2 + 1\]
Putting the required values in equation (1),
\[ = \left( {\sqrt 2 + 1} \right) - \left( {\sqrt 2 - 1} \right)\]
\[ = 2\]
Hence, the correct option is 1.
Note: To solve such problems one should have a good knowledge of trigonometric and integration formulas. Also, when there’s a function inside the function always apply the chain rule like we do in differentiation after doing the differentiation of the whole function we multiply the differentiation of the inner function. But in this, we integrate the function and then divide the required term by the differentiation of the inner part. It can be written as $\int {f\left( {g\left( x \right)} \right)dx = \dfrac{{\int {f\left( {g\left( x \right)} \right)dx} }}{{\dfrac{d}{{dx}}g\left( x \right)}}} $. Now, to solve the limits in integration. First, integrate the whole function then subtract the integration using the lower limit from the integration using the upper limit. For example, the required integration is $2x$and we have the limit $2$ to $4$ then the answer will be $2\left( 4 \right) - 2\left( 2 \right) = 4$.
Formula Used:
Trigonometric formulas –
$\tan \theta = \sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} $
$1 + \cos 2A = 2{\cos ^2}A$
Integration formula –
$\int {{{\sec }^2}xdx = } \tan x$
Complete step by step Solution:
Given that,
$\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} $
Assume the given integral be $I$,
$I = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{1 + \cos x}}} $
$ = \int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {\dfrac{{dx}}{{2{{\cos }^2}\dfrac{x}{2}}}} $
$ = \dfrac{1}{2}\int\limits_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}} {{{\sec }^2}\dfrac{x}{2}} dx$
$ = \dfrac{1}{2}\left[ {\dfrac{{\tan \dfrac{x}{2}}}{{\dfrac{1}{2}}}} \right]_{\dfrac{\pi }{4}}^{\dfrac{{3\pi }}{4}}$
$ = \tan \dfrac{{3\pi }}{8} - \tan \dfrac{\pi }{8} - - - - - (1)$
Using trigonometric formula, $\tan \theta = \sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} $to find the value of $\tan \dfrac{{3\pi }}{8}$and $\tan \dfrac{\pi }{8}$
\[\tan \dfrac{\pi }{8} = \sqrt {\dfrac{{1 - \cos \dfrac{\pi }{4}}}{{1 + \cos \dfrac{\pi }{4}}}} \]
\[ = \sqrt {\dfrac{{1 - \dfrac{1}{{\sqrt 2 }}}}{{1 + \dfrac{1}{{\sqrt 2 }}}}} \]
\[ = \sqrt {\dfrac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}}} \]
\[ = \sqrt {\dfrac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}} \times \dfrac{{\sqrt 2 - 1}}{{\sqrt 2 - 1}}} \]
Multiply denominator and numerator by \[\sqrt 2 - 1\],
\[ = \dfrac{{\sqrt 2 - 1}}{1}\]
Similarly, \[\tan \dfrac{{3\pi }}{8} = \sqrt 2 + 1\]
Putting the required values in equation (1),
\[ = \left( {\sqrt 2 + 1} \right) - \left( {\sqrt 2 - 1} \right)\]
\[ = 2\]
Hence, the correct option is 1.
Note: To solve such problems one should have a good knowledge of trigonometric and integration formulas. Also, when there’s a function inside the function always apply the chain rule like we do in differentiation after doing the differentiation of the whole function we multiply the differentiation of the inner function. But in this, we integrate the function and then divide the required term by the differentiation of the inner part. It can be written as $\int {f\left( {g\left( x \right)} \right)dx = \dfrac{{\int {f\left( {g\left( x \right)} \right)dx} }}{{\dfrac{d}{{dx}}g\left( x \right)}}} $. Now, to solve the limits in integration. First, integrate the whole function then subtract the integration using the lower limit from the integration using the upper limit. For example, the required integration is $2x$and we have the limit $2$ to $4$ then the answer will be $2\left( 4 \right) - 2\left( 2 \right) = 4$.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Addition of Three Vectors: Methods & Examples

Addition of Vectors: Simple Guide for Students

Algebra Made Easy: Step-by-Step Guide for Students

Relations and Functions: Complete Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

